US009326145B2

a2 United States Patent 10) Patent No.: US 9,326,145 B2

Awan et al. (45) Date of Patent: Apr. 26, 2016
(54) SYSTEM AND METHOD FOR APPLICATION (52) US.CL

USAGE CONTROLS THROUGH POLICY CPCccue. HO04W 12/08 (2013.01); HO4L 63/107
ENFORCEMENT (2013.01); HO4L 63/20 (2013.01); HO4W 12/02
(2013.01)

(71) Applicant: Aruba Networks, Inc., Sunnyvale, CA (58) Field of Classification Search
us) CPC HO04W 12/08; HO4W 12/02; HO4L 67/04;
HO04L 63/107; HO4L 63/20; HO4L 63/10

(72) Inventors: Asif Awan, Dublin, CA (US); Shekhar
Kshirsagar, San Jose, CA (US); Chetan
Kumar, Bangalore (IN); Deepak
Agarwal, Bangalore (IN); Suman

USPC oo 726/4,22;713/186
See application file for complete search history.

Maradani, Bangalore (IN); Sunil G. V. (56) References Cited
Babu, Bangalore (IN) U.S. PATENT DOCUMENTS
(73) Assignee: ARUBA NETWORKS, INC., 2007/0101435 Al* 5/2007 Konanka GO6F 21/52
Sunnyvale, CA (US) 726/27
2008/0004886 Al* 1/2008 Hames et al. ..ooocoovveenen. 705/1
(*) Notice: Subject to any disclaimer, the term of this 2009/0172821 Al* 7/2009 Dairacccco..... GOGF 21/55
patent is extended or adjusted under 35 2013/0219462 Al* 82013 Arat G06F7§?ﬁ(7)
atsSu .o
U.S.C. 154(b) by 80 days. 726/1
2014/0033326 Al* 1/2014 Chien ...ccooooovvccomrvcennreen. 726/28

(21) Appl. No.: 13/971,759
* cited by examiner
(22) Filed: Aug. 20,2013
. L Primary Examiner — Dao Ho
(65) Prior Publication Data (74) Attorney, Agent, or Firm — Mannava & Kang, P.C.

US 2014/0173700 A1 Jun. 19, 2014

Related U.S. Application Data 7 ABSTRACT

(60) Provisional application No. 61/737,819, filed on Dec.
16, 2012, provisional application No. 61/776,633,
filed on Mar. 11, 2013.

A method includes a particular user application, without
operating system kernel access, performing the operations of:
identifying a set of applications that a user has permission to
access, receiving a request to a access a particular application

(51) Int.Cl of the set of applications, and causing execution of the par-
HO4W 12/08 (2009.01) ticular application.
HO4L 29/06 (2006.01)
HO4W 12/02 (2009.01) 17 Claims, 36 Drawing Sheets
WIRELESS DEVICE 100)
NONAGLATILE NENORY 220 SERVER 110 NON-VOLATILE MEMORY -
WORKSPACE APPN 240
APPLICATION
MANAGEWENT INSTRUMENTATION g me| ENTERPRISE
) ENGINE 242 {WRAPPING) LOGIC APPN STORE
| 225 266 280
PROCESSOR(S) | 2 POLICY PROCESSOR(S] | 9 292
200 i 2501 ENFORCERZM | 2sow 20 POLICY —
| 2 A DEFINITION f
WRAPPED APPN WRAPPED APPN MANAGEMENT i 7 PaLICY
POLICY I pPoLICY | | LOGIC 282 A store
ENFORCER 262 | || ENFORCER 252y | Lot policy
v < EVALUATION # SEVICE
R 4 LoGIC 284 (SPECIFIC) 0B
~220 SHARED DATA [_ 50
STORE i By
VOLATILE MEMORY 232 COMM IF VOLATILE MEMORY 272
262
ENCRYPTION TOKEN(S) —-—
KEY(S) 24 P
COMM iF
210 .
w0 ’
COMPUTING DEVICE 150
NON-VOLATILE MEMORY
|
|
PROCESSCR(S) || POLICY DEFINITION USER |
NETWORK L INTERFACE 295 |
120 |
! COMM I'F

US 9,326,145 B2

Sheet 1 of 36

Apr. 26, 2016

U.S. Patent

0l

mm>mm_

o

|

Tis?%is

I 'OId

———_ B

.

w
391A3d (DINOYLO3TA) |

SRERE . L

US 9,326,145 B2

Sheet 2 of 36

Apr. 26,2016

U.S. Patent

(¥4
A/ WNQD

41 NNO2 -
SBZ JOVAHTLNI
H3ASN NOILINIAEA ADIMOd (SHOSSIN0Yd
AOWIW TULYTOANON
08T 301A30 ONILNGNOD
P
707
T2 AMOWAW IILYI0A HANOD
62
000 [s
NOLLYAWAT . N
A0I10d 79~
782 21907 __
ADI10d ol INIWIOUNWN | |
NOILINIA3Q % L
A9IN0d 09¢
¢ | (slbossanoud
A 992
JHOLS Nddv 21907 (ONIddvHM)
ISIdMIINT NOLLY.LNINNYLSNI
NOILYOTddY
062 (74 o
AHOWAW TULYTOANON Hu3Adas

e (A
(SIN3MOL NOILJAYONT

Z€C AMOW3N TULYTIOA

JHOLS
V.1vQ Q2HvHS

NZGz ¥30d04NT
AJM0d AJ0d

ZATAENICTOE \E

NeddV J3ddvdM Ndd¥ 0dddvVdm

N ¢ ¥ i ¢
ose ¥z ¥30904NT 05
ADI10d

Z¥C INIONT
LNIWIOVNYIA

057~ Ndd¥ JOVdSHHOM
UEC AYOW3N FVLVIOANON

028~

¢ (S)40SS3D0Md
672

001 301A3C SSTTIIM

U.S. Patent

Apr. 26,2016 Sheet 3 of 36

300
14
APPLICATION UPLOADED TO
SERVER
v 306

T T T

— T
//gTATJC POLICY INJECTIOQ\
/ AND CONFIGURATION
/ MANIPULATION BY \
| APPLICATION /
\\ INSTRUMENTATION LOGIC /
\\ AT SERVER S

WRAPPED APPLICATION
(DELIVERED TO ELECTRONIC
DEVICE)

/ ™
// DYNAMIC POLICY INJECTION \
| AT RUNTIME BY]
\ ELECTRONIC DEVICE /

FIG. 3A e

US 9,326,145 B2

U.S. Patent

Apr. 26, 2016 Sheet 4 of 36
300
P

RECEIVE APPLICATION
(BINARY EXECUTABLE APPLICATION;

NON-EXECUTABLE FILES - CONFIGURATION

FILE(S), RESOURCE FILE(S))

B,
L 4

v

HAS

BINARY
EXECUTABLE YES -
APPLICATION BEEN > NON E?LEE%)TABLE
INSTRUMENTED MODIFIED

(WRAPPED) ?

¢ ,

NO 335 345
)] P

INSERT POLICY ENFORCER (PE)
INTO BINARY EXECUTABLE
APPLICATION
(FIRST DYNAMIC LIBRARY)

FIG. 3B

ASSIGN UNIQUE IDENTIFIER
TO WRAPPED APPLICATION

350
L 4 P

US 9,326,145 B2

MANIPULATE URL(S) ASSOCIATED

WITH THE WRAPPED APPLICATION
355

___________ I

{ i
! MANIPULATE DOCUMENT !
i TYPES PERMITTED FOR USE 1
! BY WRAPPED APPLICATION |
i i

MANIPULATE PRIVILEGES/
PERMISSIONS ASSOCIATED
WITH THE WRAPPED
APPLICATION

MANIPULATE SETTINGS
IN RESOURCE FILE(S) OF
THE WRAPPED APPLICATION

U.S. Patent

Apr. 26,2016 Sheet S of 36

START

370
2

RECEIVE WRAPPED
APPLICATION BY ELECTRONIC DEVICE

WRAPPED
APPLICATION

LAUNCHED
?

NO

380
2

RUN POLICY ENFORCER (INJECTED
DYNAMIC LIBRARY WITHIN
EXECUTABLE BINARY APPLICATICN)

l 385
4

CHANGE SYMBOL TABLE ENTRIES
FOR SYSTEM CALLS THAT ARE TO BE
INTERCEPTED

390
) 4 P

REPLACE FRAMEWORK CALLS WITH
PREDEFINED CALLS

l 395
b

RUN EXECUTABLE APPLICATION
WITH BEHAVIOR CONTROLLED BY
THE POLICY ENFORCER (PE)

END

US 9,326,145 B2

FIG. 3C

U.S. Patent Apr. 26, 2016

START

EACH WRAPPED APPLICATION
ASSIGNED UNIQUE IDENTITY

v

MANIPULATE URL(S) ASSOCIATED
WITH THE WRAPPED APPLICATION

v

Sheet 6 of 36

~ 400

~ 405

DEFINE NEW DOCUMENT TYPE FOR
DEFINING GROUP OF FILES ACCESSIBLE
BY THE WRAPPED APPLICATION

~ 410

415

LAUNCH

US 9,326,145 B2

TARGETED
APPLICATION NO
BY WRAPPED
APPLICATION

?
420
¢

POLICY ENFORCER (PE) OF THE

WRAPPED APPLICATION CHECKS

IF THE TARGETED APPLICATION
IS PART OF THE WORKSPACE

425

TARGETED
APPLICATION

ERROR MESSAGE TO
INDICATE LAUNCH FAILURE
FOR TARGETED APPLICATION

435

IS THE

440
4

WRAPPED
APPLICATION
PERMITTED TO LAUNCH
THE TARGETED

YES

APPLICATION

LAUNCH “WRAPPED"
TARGETED
APPLICATION

?

445
2

DISALLOW LAUNCH
OF TARGETED
APPLICATION

FIG. 4A

U.S. Patent Apr. 26,2016 Sheet 7 of 36 US 9,326,145 B2

START

WRAPPED APPLICATION REQUESTS TO CONDUCT DOCUMENT 450
EXCHANGE WITH AN “AVAILABLE” APPLICATION

A 4

POLICY ENFORCER OF THE WRAPPED APPLICATION TO [~4°°
ENFORCE POLICY TO RESTRICT WHAT APPLICATIONS
ON THE WORKSPACE ARE “AVAILABLE” (SOME
WORKSPACE, SERVER-BASED GROUP POLICY, ETC.)

v
TARGETED APPLICATION, LISTED AS BEING “"AVAILABLE"” FOR r~460
DOCUMENT EXCHANGE, IS SELECTED TO BE LAUNCH

v

POLICY ENFORCER OF WRAPPED APPLICATION INTERCEPTS ALL [~405
FRAMEWORK AND SYSTEM CALLS TO LAUNCH A WRAPPED
APPLICATION CORRESPONDING TO THE TARGETED APPLICATION

DOCUMENTS

TO BE SHARED
?

ENCRYPT THE DOCUMENT USING DOCUMENT [~4/5

ENCRYPTING KEY SHARED BY THE WRAPPED

APPLICATION AND THE SELECTED WRAPPED
APPLICATION PRIOR TO TRANSMISSION

END

FIG. 4B

U.S. Patent Apr. 26,2016 Sheet 8 of 36 US 9,326,145 B2

START

LAUNCH WORKSPACE APPLICATION (WS)

500
P

a4

505 ¥

NO

AUNTHENTICATED

510
ba

RECEIVE APPLICATIONS PERMITTED FOR USER AND
CORRESPONDING ICONS FOR DISPLAY ON DISPLAY SCREEN

515
v P
APPLY SECURITY POLICIES TO LOCK ANY OF THE RECEIVED WRAPPED
APPLICATIONS (ADMIN-BASED, GEO-FENCING, TIME-FENCING,
MOTION-FENCING, NETWORK-FENCING, OFFLINE, DEVICE-STATE)

525
520 ¢

ALL WRAPPED

APPLICATION LOCK

POLICIES BE

EVALUATED
?

LOCK APPLICATIONS
CONTROLLED BY
MISSING APPLICATION
LOCK POLICY

YES |«
A 4
DISPLAY WRAPPED APPLICATIONS r~530
(AND UNWRAPPED APPLICATIONS)

550
2

LAUNCHED
USER PROMPTED FOR
APPLICATION (APPN)
IS A WRAPPED AUTHENTICATION
APPLICATION

PASSCODE

USER PASSCODE NO
DISE'{,CFZA%S’EDOF FETCHED FROM INTERNAL ACCURATELY
APPLICATION(S) TO DATA STORE WITHOUT INF;UT
BE DOWNLOADED AND USER ACTIVITY ?
INSTALLED
565 <
Pd ¥
FIG. 5] LAUNCH APPLICATION [

»”)
al

END

U.S. Patent Apr. 26,2016 Sheet 9 of 36 US 9,326,145 B2

- ' '. 605

AR RARERREN %

600

FIG. 6B

U.S. Patent Apr. 26, 2016 Sheet 10 of 36 US 9,326,145 B2

630

720

730

700

FIG. 7

U.S. Patent Apr. 26, 2016 Sheet 11 of 36 US 9,326,145 B2

800

810

,

SSH Mobile Free

850
840 820 830

FIG.

U.S. Patent

Apr. 26,2016 Sheet 12 of 36

START

INSTALL WORKSPACE APPLICATION (WS) ON ELECTRONIC DEVICE

905 i\‘

i

i

., H

~ i

a/’ s H

- i
- i
i

i

r\/900

.~° USER .
L~ "AUNTHENTICATED ™.,
s, AFTER LAUNCH -

S~ OF WS

?

~
Y

s
~
-

-
~ -

g

l YES

FETCHING CATALOG OF WRAPPED APPLICATIONS
THAT ARE PROVISIONED FOR USER

!

REQUESTING ALL WRAPPED APPLICATIONS FROM THE SERVER |’\/915
v

™~ 910

RECEIVING PAYLOAD AND CORRESPONDING CONFIGURATION FILES
FOR EACH WRAPPED APPLICATION AND SCHEDULING INSTALLATION

™~ 920

925

ANY
WRAPPED

APPLICATION NEEDS

NO YES

US 9,326,145 B2

TO BE DE-PROVISIONED

930

FROM USER’S

WORKSPACE
?

v

RECEIVING “CLEAN UP” APPLICATION-
ASSIGNED IDENTITY (SAME AS THE
IDENTITY OF THE WRAPPED
APPLICATION TO BE DE-PROVISIONED
WITH A HIGHER VERSION NUMBER

v

INSTALLING CLEAN-UP APPLICATION ON TOP OF
WRAPPED APPLICATION TO BE DE-PROVISIONED

945

”i
w«

940 X

YES CLEAN-UP
APPLICATION

v

LAUNCHED
CLEAN-UP APPLICATION PERFORMS DATA ?
CLEAN-UP TO REMOVE ALL DATA CREATED

BY DE-PROVISIONED WRAPPED
APPLICATION; CREATES CONFIGURATION
MARKUP IN DATA S5TORE TO INDICATE
SUCCESSFUL CLEAN-UP; AND TERMINATES

e
B

END

FIG.

9A

U.S. Patent Apr. 26, 2016 Sheet 13 of 36 US 9,326,145 B2

FIG. 9B >

U.S. Patent Apr. 26, 2016 Sheet 14 of 36 US 9,326,145 B2

START

WS
APPLICATION

LAUNCHED
?

960

READING DATA STORE OF THE ELECTRONIC
DEVICE TO DETERMINE IF ANY CONFIGURATION
MARKUPS TO DENOTE A "CLEAN-UP” APPLICATION

l 9535
REMOVING ANY ICONS ASSOCIATED WITH DE-
PROVISIONED WRAPPED APPLICATION

END

FIG. 9C

U.S. Patent Apr. 26,2016 Sheet 15 of 36 US 9,326,145 B2

FIG. 9D

U.S. Patent

Apr. 26, 2016 Sheet 16 of 36 US 9,326,145 B2

START

1000

DETECT
SECURITY
TRIGGERING EVENTS
FOR A WRAPPED

APPLICATION
?

1005

{

POLICY ENFORCER OF THE WRAPPED
APPLICATION DELETES STORED DATA
ASSOCIATED WITH THE WRAPPED
APPLICATION (CONFIGURATIONS,
CUSTOMIZATIONS, ETC.)

WRAPPED
APPLICATION

LAUNCHED
?

NO

1015

0

WRAPPED APPLICATION OPERATES
AS IF LAUNCHED FOR FIRST TIME

END

FIG. 10

U.S. Patent Apr. 26,2016 Sheet 17 of 36 US 9,326,145 B2

{ START)
1100

v 0

CONFIGURE SERVER TO IDENTIFY WRAPPED APPLICATION(S) TO BE
AUTOMATICALLY PROVISIONED BASED ON SELECTED FACTORS

v

ONE OR MORE POLICIES DEFINED FOR DE-PROVISIONING/ [~ 1105
LOCKING BASED ON SELECTED FACTORS

v

WORKSPACE POLICY ENFORCER FETCHES I~_ 17110
DEFINED AUTO-PROVISIONING POLICIES

1115

v 2
WORKSPACE POLICY ENFORCER DETERMINES IF DEFINED
AUTO-PROVISIONING POLICIES HAVE BEEN MET

NO MORE AUTO- YES 1125
PROVISIONING !)
POLICIES
MET WORKSPACE POLICY ENFORCER
- FETCHES THE WRAPPED APPLICATION(S)
FROM SERVER AND INSTALLS
1130 X
YES AUTO-PROVISIONED NO
WRAPPED APPLICATION
» IN USE

v ?
POLICY ENFORCER OF THE AUTO-PROVISIONED

WRAPPED APPLICATION MONITORS FOR COMPLIANCE
WITH THE SELECTED FACTORS S 1135

YES

COMPLIANCE
?

1145

¢

DE-PROVISIONING OR LOCKING
AUTO-PROVISIONED APPLICATION

NP FIG. 11A

U.S. Patent Apr. 26, 2016 Sheet 18 of 36 US 9,326,145 B2

1150

FIG. 11B

U.S. Patent Apr. 26, 2016 Sheet 19 of 36 US 9,326,145 B2

Apn alee

1150

FIG. 11C

U.S. Patent Apr. 26, 2016 Sheet 20 of 36 US 9,326,145 B2

START

~—~ 1200
LAUNCH WORKSPACE APP
I~ 1205
AUTHENTICATE USER
RECEIVE UNIQUE SESSION TOKEN AND |~ 1410
ONE OR MORE WORKSPACE POLICIES
™~ 1215
STORE TOKEN AND POLICIES IN DATA
(LOCAL POLICY) STORE
I~ 1220
LAUNCH WRAPPED APPLICATION
1235
A
I~ 1225
USE SESSION TOKEN TO AUTHENTICATE FETCH CURRENT POLICIES FROM
USER FOR WRAPPED APPLICATION > WORKSPACE SERVER
|
1230 Y v
) L YES
" STORED POLICIES ~~_ STORE UPDATED POLICIES IN DATA
~~.__ OUTOFDATE? (LOCAL POLICY) STORE
~__ 1240 ™~
e
NO | v
N APPLY POLICY TO WRAPPED
> APPLICATION
1245 ™~

¥

{ STOP

FIG. 12

U.S. Patent Apr. 26, 2016

Sheet 21 of 36

START

US 9,326,145 B2

1300

SECOND (ADDITIONAL) USER ATTEMPTS TO REGISTER THE SAME
WIRELESS DEVICE TO USE THE APPLICATION USAGE CONTROL SERVICES

v

RECEIVES CONFIGURATION POLICIES TO THE
WORKSPACE FOR THE ADDITIONAL USER(S)

- 1305

v

DOWNLOAD AND INSTALL ADDITIONAL WRAPPED APPLICATIONS ~— 1310
TO BE PROVISIONED FOR THE SECOND USER

1315

U

1325

v

DOES
SECOND
SER WANT TO USE

WORKSPACE
?

NO

SECOND
USER
AUTHENTICATED
?

WORKSPACE DENOTES THE SECOND
USER AS THE CURRENT USER IN THE
DATA STORE

B
| o

A4

POLICY ENFORCER USES CURRENT
USER INFORMATION STORED IN THE
DATA STORE TO DETERMINE USER
SPECIFIC POLICIES FOR USER OF

- 1330

WRAPPED APPLICATION

USER
LOGS OUT

NO

1340

A Yo .

! WIPE (REMOVE) INFORMATION !
! ASSOCIATION WITH WORKSPACE AND !
i WRAPPED APPLICATIONS OR BOTH

13

U.S. Patent

Apr. 26,2016

START

Sheet 22 of 36

INSTRUMENTATION (WRAPPING) OF ALL
NOTIFICATION RELATED CALLS (REMOTE, LOCAL)

- 1400

v

WRAPPED NOTIFICATION APPLICATION CREATES
NOTIFICATION BASED ON A DETECTED EVENT

- 1405

v

POLICY ENFORCER OF THE WRAPPED NOTIFICATION APPLICATION ~. 1410
STORES NOTIFICATION INFORMATION IN THE SHARED DATA STORE
1415 X
YES WORKSPACE NO
APPLICATION
LAUNCHED
A 4 ?
WORKSPACE APPLICATION READS
NOTIFICATION INFORMATION FROM
SHARED DATA STORED FOR ALL
WRAPPED APPLICATIONS ™~ 1420
v
DISPLAY NOTIFICATIONS ~— 1425
ASSOCIATED WITH THE WRAPPED
APPLICATIONS ON SCREEN DISPLAY
1435
WRAPPED
APPLICATION WITH NOTIFICATION
NOTIFICATION k ACTED 1440

LAUNCHED
?

FIG. 14

UPON
?

A 4

REMOVE NOTIFICATION BY
THE WRAPPED NOTIFICATION
APPLICATION

!

1445 ™

POLICY ENFORCER OF THE WRAPPED
NOTIFICATION APPLICATION CLEARS
CORRESPONDING NOTIFICATION
INFORMATION IN THE THE DATA STORE

!

1450 ™

NOTIFICATION REMOVED NEXT TIME WS

LAUNCHED BY USER UPON DETECTING
NOTIFICATION IN THE DATA STORE

US 9,326,145 B2

U.S. Patent

Apr. 26, 2016 Sheet 23 of 36 US 9,326,145 B2

START
1 5200

APPLICATION UPLOADED TO SERVER

l Jies
INFORMATION PERTAINING TO THE

APPLICATION IS STORED IN
ENTERPRISE APPLICATION STORE

1510 OTHER

APPLICATIONS

"SIMILAR” TO
UPLOADED

APPLICATION
?

1515
0

ADD UPLOADED APPLICATION TO
APPLICATION ALIAS GROUP

END

FIG. 15A

U.S. Patent Apr. 26,2016 Sheet 24 of 36

START

US 9,326,145 B2

1520

TO BE PROVISIONED TO A SPECIFIC USER GROUP

A GROUP OF WRAPPED APPLICATIONS BEING SELECTED

P

1525

ANY
APPLICATIONS
NOT PERMITTED ON

NO

PLATFORM
?

1530

PROVIDE SERVER WITH OPTIONS
AS TO SIMILAR APPLICATIONS

1535

v

1540

A 4

APPLICATION (FROM OPTIONS)
SELECTED BY ADMINISTRATOR AND
ADDED TO GROUP IN LIEU OF

COMPLETE GROUPING TO
PROVISION THE WRAPPED
APPLICATIONS

FIG. 15B

U.S. Patent Apr. 26,2016 Sheet 25 of 36 US 9,326,145 B2

START

DEFINING AN ALIAS GROUP OF
“SIMILAR” APPLICATIONS, ONE
“SIMILAR” APPLICATION APPLYING
TO EACH PLATFORM OR EACH
GEOGRAPHIC LOCATION

l 15250
DURING INSTRUMENTATION OF THE

WRAPPED APPLICATION, THE
APPLICATION ALIAS IS INJECTED

l 15255
DURING PROVISIONING OF A WRAPPED
APPLICATION BY THE POLICY ENFORCER OF
THE WORKSPACE APPLICATION, THE
WORKSPACE REQUESTS FROM THE SERVER A
WRAPPED APPLICATION FROM THE ALIAS
GROUP IDENTIFIED BY THE APPLICATION
ALIAS

1545

END

FIG. 15C

US 9,326,145 B2

Sheet 26 of 36

Apr. 26,2016

U.S. Patent

AMWN0D e
T "
Or "'OI4
JOVAILNI
HASN NOILINIAEA ADIT0d (S)40SSIN0Yd p
AYOWIAW FTLYTOANON
30IA30 ONILNAIWOD S
“
4 NNOD
\\ '
Ko
AHONIW ITLYVIOA 4 WROJ AMOWIN TVLYIOA
_
W NZgg) L2594
| 2 ¢
80 (014103d8) P | HIOHOINT HIUO0ANT
301A30 4 NOLLYNTVAZ @ A2I70d AOOd
S Aonod | N Ndd¥ Q3ddvi INddV 03ddvam
wos L | ooT | , | 430HOINA /./.) \
ADIOd -] INFWIOVNYA . AorTod
NOILINI43a ¥I0404NT W
- (S)40$$3008d Nddv I T — ($)40$$3004d |
ADI0d JOVASHHOM o R EVETI=r g W
WHOALY1d |
91907 (ONIddYHM) , - WO
FHOLS Nadv NOILLYINIWNELSNI oog; SOW¥O4Lv1d
ISIYAYAING [P
NOILYOINddY e
019t
_— AHOWIW TTLYTOANON
AMOWIN TULYIOANON VL HIANAS 0T IDIATA SSTTTUIM

U.S. Patent Apr. 26,2016 Sheet 27 of 36 US 9,326,145 B2

(ST:RT) 12702

LAUNCH WRAPPED APPLICATION AND
APPLY ONE OR MORE WORKSPACE
POLICIES

INTERCEPT A SOCKET CALL 10

DETERMINEAN P ADDRESSOR |, 4704

HOSTNAME ASSOCIATED WITH THE
CALL

1706

SPECIAL
HANDLING
FOR CALL?

1708
2

APPLY ONE OR MORE POLICIES TO THE

1712
2 CALL

PROCESS THE CALL ¢ 1710

PROCESS THE CALL BASED ON THE
POLICIES

>< sToP >4

FIG. 17

U.S. Patent

1808
2

Apr. 26,2016

Sheet 28 of 36

START

US 9,326,145 B2

1802
P

LAUNCH WRAPPED APPLICATION AND
APPLY ONE OR MORE WORKSPACE
POLICIES

ONE
OR MORE ONLINE
POLICIES?

1806

ONLINE
AND CONNECTED TO
SERVER?

LOCK APPLICATION

| PROCESS DATA INPUT/CUTPUT BASED
| ON SPLIT KEY DATA ENCRYPTION

FIG. 18

U.S. Patent Apr. 26, 2016

START

LAUNCH APP AND APPLY ONE OR MORE |~ 1902
WORKSPACE POLICIES

Y

COMMUNICATE DATA TO A GATEWAY,
OR TO A WORKSPACE SERVER FOR
FORWARDING TO THE GATEWAY, TO ™~ 1904

IDENTIFY THE APP ON A NETWORK

TO BE COMMUNICATED OVER THE
NETWORK |

I
INJECT IDENTIFICATION DATA IN DATA II\’ 1906

TRANSMIT THE DATA OVER THE
NETWORK ~ 1908

FIG. 19A

Sheet 29 of 36

US 9,326,145 B2

START

RECEIVE NETWORK TRAFFIC 1932

v

IDENTIFY THE NETWORK TRAFFIC AS
ORIGINATING FROM AN ENTERPRISE |~~~ 1954
WORKSPACE APP

y

ENFORCE ONE OR MORE POLICIES ON
THE NETWORK TRAFFIC BASED ON THE i~ 1956
IDENTIFICATION

FIG. 19B

U.S. Patent Apr. 26, 2016 Sheet 30 of 36 US 9,326,145 B2

START

2002
AUTHENTICATE USER TO A WORKSPACE
BASED ON USER CREDENTIALS FIG. 20
v 2004
OBTAIN ENCRYPTION KEY FROM A
WORKSPACE SERVER
v , 2006
ENCRYPT USER CREDENTIALS WITH
SERVER SUPPLIED ENGRYPTION KEY
AND STORE IN A LOCAL POLICY STORE
v 2008
LAUNCH A WRAPPED APPLICATION
¥ |, 2010

FETCH ENCRYPTED CREDENTIALS
FROM THE LOCAL POLICY STORE

* 2012

-t
OBTAIN ENCRYPTION KEY FROM THE
SERVER
v | 2014
DECRYPT USER CREDENTIALS IN LOCAL
STORAGE WITH RECEIVED ENCRYPTION
KEY
2020
! 2016
RECEIVE NEW USER N Y
CREDENTIALS = CREDENTIALS CURRENT?
¢ 202 . 018
A%ﬁ’fg ﬂgNE 83&?&%@;;;0 UTILIZED DECRYPTED CREDENTIALS TO
CREDENTIALS AUTHENTICATE USER TO WRAPPED
APPLICATION

v 2024

ENCRYPT NEW USER CREDENTIALS

WITH SERVER SUPPLIED ENCRYPTION STOP
KEY AND STORE IN A LOCAL POLICY

STORE

U.S. Patent Apr. 26, 2016 Sheet 31 of 36 US 9,326,145 B2

START

DOWNLOAD AND INSTALL TWO OR
MORE WRAPPED APPLICATIONS

2102

v 2104
LAUNCH A FIRST WRAPPED
APPLICATION

L]

AUTHENTICATE USER TO THE FIRST
WRAPPED APPLICATION AND PROVIDE
AUTHENTICATION SERVER WITH
AUTHENTICATION DATA

Y 2108
RECEIVE ONE OR MORE SECURITY |
POLICIES FROM THE AUTHENTICATION FIG. 21A
SERVER, INCLUDING A PASSCODE
POLICY

B 2106

| 2110

SET, ORRESET, AWRAPPED
APPLICATION SINGLE SIGN ON
PASSCODE, IF NEEDED, WITH THE
SERVER

* 2112

UTILIZE THE PASSCODE TO
AUTHENTICATE THE USER TQ THE FIRST
WRAPPED APPLICATION

* 2114

LAUNCH A SECOND WRAPPED
APPLICATION

2116

FIRST LAUNCH
OF SECOND WRAPPED
APPLICATION?

| 2118

RECEIVE ONE OR MORE SECURITY
POLICIES FROM THE SERVER,
INCLUDING A PASSCODE POLICY

* |, 2120 5 2122

UTILIZE THE PASSCODE TO
C AUTHENTICATE THE USERTO THE Appéﬁgggo%?\égﬁigé THE STOP
SECOND WRAPPED APPLICATION

U.S. Patent Apr. 26, 2016 Sheet 32 of 36 US 9,326,145 B2

=)

¥ |, 2150

RECEIVE USER AUTHENTICATION DATA
FROM A USER LAUNCHING A WRAPPED
APPLICATION

Y

STORE ADATA RECORD INCLUDING THE| 2452
USER CREDENTIALS, DATA INDICATIVE ¢~
OF THE WRAPPED APPLICATION, AND
DATA INDICATIVE OF THE USER'S
DEVICE

Y

PUSH A PASSCODE POLICY TOTHE [~
WRAPPED APPLICATION

2154

* r 2156

RECEIVE A PASSCODE FROM THE USER,
IF NEEDED

Y

CORRELATE THE DATA RECORD WITH
DATA INDICATIVE OF ANOTHER
WRAPPED APPLICATION LAUNCHED ON
THE USER'S DEVICE

v
(STOP)
FIG. 21B

2158

U.S. Patent

START

Apr. 26,2016

ASSIGN A WORKSPACE A FIRST UNIQUE
IDENTIFIER

S, 2202

v

ASSIGN EACH USER OF A WORKSPACE A
SECOND UNIQUE IDENTIFIER

B 2204

v

2206

STORE A DIGITAL IDENTITY, GENERATED
FROM THE FIRST AND SECOND UNIQUE
IDENTIFIERS, FOR THE WORKSPACE

v

STORE A DEVICE IDENTIFIER

, 2208

STORE RECEIVED USER CREDENTIALS

2210

FIG. 22A

Sheet 33 of 36

START

US 9,326,145 B2

2252
3

LAUNCH APP (APP IS LAUNCHED
SUBSEQUENT TO USER
AUTHENTICATION TO WORKSPACE)

v

INITIATE COMMUNICATION BETWEEN
THE APP AND A WORKSPACE SERVICE

v

AUTHENTICATE THE APP TO THE
WORKSPACE SERVICE BASED ON A
DEVICE IDENTIFIER, THE USER
CREDENTIALS, AND THE DIGITAL
IDENTITY

A

PROCESS COMMUNICATIONS BETWEEN
THE APP AND THE WORKSPACE
SERVICE AFTER AUTHENTICATION

STOP

FIG. 22B

¥ 2254

2256

2258

U.S. Patent

Apr. 26,2016 Sheet 34 of 36

(START)
L]

2302
'

LAUNCH WRAPPED OR WORKSPACE
APPLICATION AND APPLY ONE OR MORE
WORKSPACE POLICIES

v

INTERCEPT SYSTEM CALL TO READ,
WRITE, OR OTHERWISE MANIPULATE
DATA

v

BASED ON A POLICY EVALUATION,
ENCRYPT DATA [F NECESSARY WITH A
WORKSPACE ENCRYPTION KEY

Y

PROCESS SYSTEM CALL WITH
ENCRYPTED DATA

Y

ACCESS THE ENCRYPTED DATA AND
DECRYPT WITH A CORRESPONDING
WORKSPACE DECRYPTION KEY

v
(STOP)
FIG. 23

2304

2306

2308
-

2310

US 9,326,145 B2

U.S. Patent

Apr. 26,2016 Sheet 35 of 36 US 9,326,145 B2
START
2402
L
USER ACCOUNT CREATED FOR A
WORKSPACE APPLICATION
Y 2404
ENROLL USER CORRESPONDING TO |~
CREATED ACCOUNT IN A CLOUD
STORAGE SERVICE START
2452
STOP AUTHENTICATE USER TO A WORKSPACE
BASED ON USER CREDENTIALS
FIG. 24A L] | 2is
LAUNCH WORKSPACE APPLICATION AND
APPLY ONE OR MORE WORKSPACE
POLICIES
v 2456
AUTHENTICATE USERTOCLOUD [~
STORAGE BASED ON THE USER
CREDENTIALS
|, 248
INTERCEPT DATA INPUT/OUTPUT CALL
IN THE WORKSPACE APPLICATION

2460

SPECIAL
STORAGE HANDLING

FOR CALL?
_ 2462

2464
= PROCESS THE INPUT/
OUTPUT FROM STORAGE
ON THE CLOUD STORAGE

SERVICE

PROCESS THE CALL

STOP

FIG. 24B

U.S. Patent

START

Apr. 26,2016

| 2502

LAUNCH APPLICATION AND APPLY ONE
OR MORE WORKSPACE POLICIES

v

INTERCEPT SYSTEM CALL TO READ,
WRITE, OR OTHERWISE MANIPULATE
DATA

v

ENCRYPT DATA WITH A DATA STORAGE
ENCRYPTION KEY

Y

ENCRYPT THE DATA STORAGE
ENCRYPTION KEY WITH A SYMMETRIC
ENCRYPTION KEY

v

SPLIT THE SYMMETRIC ENCRYPTION
KEY

Y

ENCRYPT A FIRST PART OF SPLIT
SYMMETRIC ENCRYPTION KEY WITH AN
ENCRYPTION KEY BASED ON USER
CREDENTIALS

v

ENCRYPT THE SECOND PART OF THE
SPLIT ENCRYPTION KEY WITH A SERVER
KEY

FIG. 25A

2504

2506

2508

2510
"

2512

B 2514

Sheet 36 of 36

START

-
LAUNCH APP AND APPLY ONE OR MORE

WORKSPACE POLICIES

v

INTERCEPT SYSTEM CALL TO READ,
WRITE, OR OTHERWISE MANIPULATE
ENCRYPTED DATA

=)

v

AUTHENTICATE A USER BASED ON ONE
OR MORE USER CREDENTIALS

US 9,326,145 B2

2552

2554

n 2556

v

DECRYPT A FIRST PART OF A SPLIT
SYMMETRIC ENCRYPTION KEY WITH AN
ENCRYPTION KEY BASED ON USER
CREDENTIALS

v

REQUEST THE SERVER KEY AND
DECRYPT THE SECOND PART OF THE
SPLIT SYMMETRIC ENCRYPTION KEY

L]

JOIN THE SPLIT SYMMETRIC
ENCRYPTION KEY PARTS

v

DECRYPT AN ENCRYPTED DATA
STORAGE ENCRYPTION KEY WITH THE
JOINED SYMMETRIC ENCRYPTION KEY

-

v

USE THE DECRYPTED DATA STORAGE
ENCRYPTION KEY TO DECRYPT THE
ENCRYPTED DATA, WHICH IS THE
SUBJECT OF THE SYSTEM CALL

FIG. 25B

2558

2560

2562

2564

2566

US 9,326,145 B2

1

SYSTEM AND METHOD FOR APPLICATION
USAGE CONTROLS THROUGH POLICY
ENFORCEMENT

BENEFIT CLAIM; INCORPORATION BY
REFERENCE

This non-provisional patent application claims priority
under 35 U.S.C. §120 to provisional patent application
61/776,633 filed on Mar. 11, 2013, the entire contents of
which are hereby incorporated by reference.

FIELD

Embodiments of the present disclosure relate to the field of
network communications, and in particular a system and
method for controlling application software operating within
a sandbox environment through policy enforcement.

BACKGROUND

Until fairly recently, wireless networks were configured to
only support wireless devices that were pre-approved by a
network administrator. Typically, this required an incoming
guest to register her wireless device (e.g., dual-mode cellular
telephone with capabilities) with the network administrator.
This registration process was problematic because, from an
IT perspective, it was quite labor intensive and there is little
control on the types of applications that could be executed by
that registered wireless device.

Namely, for device registration, the network administrator
manually uploaded either the unique media access control
(MAC) address of the wireless device or its newly assigned
identifier into a database. Tasked with the responsibility of
controlling access to the wireless network, an authentication
server accessed the database whenever a wireless device
sought access to the network. If the wireless device was
registered, it was granted access to the network. Otherwise,
access was denied. The types of applications executed by the
wireless device were not controlled thoroughly.

Recently, wireless networks are being adapted to support
“Bring-Your-Own-Device” (BYOD) environments, where
all users are able to access a targeted wireless network
through their personal devices, such as laptop computers,
tablets, or dual-mode cellular telephones for example. As a
result, the number of devices per network user has grown
from a one-to-one relationship to a one-to-many relationship
as a network user may simultaneously or interchangeably
connect to a network using multiple devices.

In light of BYOD environments, controlling enterprise
access to personal devices and enforcing compliance with
access and usage policies for application software running on
these devices has become imperative for network security.
Without such policy enforcement, users may install and oper-
ate application software as well as access websites that are
inappropriate for a work environment. Furthermore, without
ensuring compliance with application software usage, the
BYOD networking environment has made networks suscep-
tible to malware attacks.

Therefore, a system and method is needed for enabling
application software to be provisioned within an enterprise
network along with device-level policy enforcement to con-
trol access and usage of the application software, especially
application software provided by third parties.

BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the present disclosure are illustrated by
way of example, and not by way of limitation, in the figures of
the accompanying drawings and in which:

10

20

35

40

45

2

FIG. 1 is a general block diagram of a network including a
first networked electronic device (wireless device) and a sec-
ond networked electronic device (server) collectively deploy-
ing policy enforcement for controlling access and usage of
application software.

FIG. 2 is an exemplary detailed block diagram of the inter-
nal logic within the networked electronic devices within the
wireless network of FIG. 1.

FIGS. 3A-3C are exemplary flow diagrams of the opera-
tions performed by application instrumentation wrapping
logic and a policy enforcer implemented within a wrapped
application within the second networked electronic device of
FIG. 2.

FIG. 4A is an exemplary flow diagram of the operations
performed by a policy enforcer of a wrapped application to
logically relate other wrapped applications within the same
workspace to allow communications between these applica-
tions.

FIG. 4B is an exemplary flow diagram of the operations
performed by a policy enforcer of a wrapped application to
logically restrict document exchange behavior between the
wrapped application and other wrapped application within
the same workspace.

FIG. 5 is an exemplary flow diagram of the operations
conducted to logically relate a workspace application to
wrapped applications in order to provide a logical environ-
ment that, through a graphics user interface (GUI) display,
conveys a perception to the user that the wireless device is
operating in an enterprise-controlled workspace.

FIGS. 6A-6C are exemplary screen shots illustrating
authentication using either an enterprise credential and/or
personally configured passcode to control access to the work-
space.

FIG. 7 is an exemplary screen shot illustrating the work-
space including (unlocked) wrapped applications that are
accessible by the user and (locked) wrapped applications that
are inaccessible by the user.

FIG. 8 is an exemplary screen shot illustrating a floating
toolbar that is displayed to overlay on a display screen pro-
duced by one of the wrapped applications of FIG. 7 upon
execution.

FIGS. 9A-9D are exemplary flow diagrams and screen
shots of a first illustrative embodiment for automatic provi-
sioning and de-provisioning of wrapped applications within
the workspace.

FIG. 10 is exemplary flow diagram of a second illustrative
embodiment for automatic de-provisioning a wrapped appli-
cation within the workspace to remove configuration data
while retaining execution of the wrapped application.

FIGS. 11A-11C are exemplary flow diagrams and a screen
shot for automatic provisioning and de-provisioning/locking
of wrapped applications based on particular factors.

FIG. 12 is an exemplary flow diagram for dynamic updates
of security policies without repetitive user authentication.

FIG. 13 is an exemplary flow diagram of the operations for
virtualization of a multi-user workspace.

FIG. 14 is an exemplary flow diagram of the operations for
supporting notification messages without platform support.

FIGS. 15A-15C are exemplary flow diagrams of applica-
tion aliasing for provisioning of logically equivalent wrapped
applications in response to a failure to satisfy the wireless
device or usability requirements.

FIG. 16 is an exemplary block diagram of policy enforcer
logic implemented within an operating system (OS) of the
wireless device for centralized policy control of the work-
space application and one or more wrapped applications in
contrast to the policy enforcement scheme of FIG. 2.

US 9,326,145 B2

3

FIG. 17 is an exemplary flow diagram of the operations for
controlling network and internet access.

FIG. 18 is an exemplary flow diagram of the operations for
enforcing an online application security policy.

FIG. 19A-19B are exemplary flow diagrams of the opera-
tions for network policy enforcement by an enterprise based
on application context.

FIG. 20 is an exemplary flow diagram of the operations for
one embodiment of workspace and wrapped application
single sign on for user authentication.

FIGS. 21 A-21B are exemplary flow diagrams of the opera-
tions for another embodiment of workspace and wrapped
application single sign on for user authentication.

FIGS. 22A-22B are exemplary flow diagrams of the opera-
tions for multi-layered workspace authentication.

FIG. 23 is an exemplary flow diagram of the operations for
securing regular and memory-mapped file access functions.

FIGS. 24 A-24B are exemplary flow diagrams of the opera-
tions for automatically enabling data backup, storage, and
sharing for workspace and wrapped applications at a cloud-
based storage service.

FIGS. 25A-25B are exemplary flow diagrams of the opera-
tions for enabling a split key-based encryption technique for
securing workspace and wrapped application data.

DETAILED DESCRIPTION

Various embodiments of the disclosure relate to a system
and method for managing a logical environment, referred to
as a “workspace,” which provides a user of a wireless device
with the perception that, through policy compliance and a
controlled graphic user interface (GUI), she is operating
within a controlled enterprise boundary. Within a particular
workspace, one or more sandboxed applications may be con-
figured to seamlessly communicate with each other through
pre-defined security policies. These applications may include
a workspace application and one or more “wrapped” appli-
cations.

A “workspace application” is an application that manages
a particular workspace and produces a springboard, dash-
board or other type of display screen to illustrate all applica-
tions associated with that particular workspace. These appli-
cations may include one or more “wrapped” application(s)
and/or “unwrapped” application(s). The workspace applica-
tion and other wrapped applications belonging to the particu-
lar workspace may be automatically provisioned from a
remotely located source (e.g. a server) without the user con-
ducting any manual or explicit downloads or installations.

As described below in detail, an application is considered
to be “wrapped” when the application undergoes binary
instrumentation, namely a process of adding new functional-
ity to (or modifying existing functionality of) a binary execut-
able application and/or any accompanying binary non-ex-
ecutable information (e.g., configuration file, resource file,
etc.). Binary instrumentation may be accomplished by insert-
ing logic adapted to intercept low-level platform calls and
change the behavior of those calls into the executable appli-
cation. Herein, this intercepting logic is referred to as a
“policy enforcer.”

Binary instrumentation normally is used when either the
source code of the executable application is not available or
the same set of software changes needs to be applied in an
automated way to different executable applications. Through
binary instrumentation, otherwise referred to as “wrapping,”
sandboxed wrapped applications, which are running on the
wireless device and managed in accordance with pre-defined
security policies, may be provided with certain functionality

10

15

20

25

30

40

45

50

55

60

65

4

and/or capabilities. The functionality and/or capabilities may
include, but are not limited to, the following: (1) inter-appli-
cation communications with virtualization; (2) workspace
auto-provisioning and de-provisioning; (3) application auto-
provisioning and de-provisioning based on selected factors
(geographic, date/time, etc.); (4) dynamic configuration
updates of security policies; (5) multi-user workspace virtu-
alization; (6) application notification; (7) cross-platform
application aliasing; (8) data access controls; and (9) auto-
matic cloud-based storage and backup. This functionality is
described below in detail.

Herein, certain terminology is used to describe features for
embodiments of the disclosure. For example, the term “wire-
less device” generally refers to any electronic device that
includes logic adapted to wirelessly communicate with a
network and/or process information related to such commu-
nications. Different types of wireless devices may include,
but are not limited or restricted to a tablet; laptop; netbook;
portable television; video gaming controller; mobile device
with cellular and/or wireless connectivity such as a smart-
phone, personal digital assistant “PDA”, headset, wearable
networked accessory (e.g. glasses, watches, etc.), or the like.

It is contemplated that a wireless device may include hard-
ware logic, including one or more of the following: (i) pro-
cessing circuitry; (ii) one or more communication interfaces
such as radios (e.g., one or more components that handle the
wireless data transmission/reception) and/or physical con-
nectors to support wired connectivity; and/or (iii) a non-
transitory computer-readable storage media (e.g., a program-
mable circuit; a semiconductor memory such as a volatile
memory such as random access memory “RAM,” or non-
volatile memory such as read-only memory, power-backed
RAM, flash memory, phase-change memory or the like; a
hard disk drive; an optical disc drive; etc.) or any connector
for receiving a portable memory device such as a Universal
Serial Bus “USB” flash drive, portable hard disk drive, or the
like.

Additionally, the terms “logic” and “engine” are generally
defined as hardware and/or software. As hardware, logic may
include processing circuitry (e.g., a controller, a processor, a
programmable gate array, an application specific integrated
circuit, etc.), semiconductor memory, combinatorial logic, or
the like. As software, logic may be one or more software
modules, such as executable code in the form of an executable
application, an application programming interface (API), a
subroutine, a function, a procedure, an object method/imple-
mentation, an applet, a servlet, a routine, a source code, an
object code, a shared library/dynamic load library, or one or
more instructions. These software modules may be stored in
any type of a suitable non-transitory storage medium (de-
scribed above) or transitory computer-readable transmission
media (e.g., electrical, optical, acoustical or other form of
propagated signals such as carrier waves, infrared signals,
digital signals).

The term “application” is application software generally
defined as a collection of binary information, including at
least a binary executable application. Additionally, the appli-
cation may further comprise one or more non-executable files
such as a configuration file and/or resource file as described
below.

The term “interconnect” is broadly defined as a logical or
physical communication path such as, for instance, electrical
wire, optical fiber, cable, bus trace, or a wireless channel
using infrared, radio frequency (RF), or any other wireless
signaling mechanism. The term “message” constitutes any
grouping of data in the form of a packet, a frame, an Asyn-

US 9,326,145 B2

5

chronous Transfer Mode (ATM) cell, or any other series of
bits having a prescribed format.

Lastly, the terms “or” and “and/or” as used herein are to be
interpreted as an inclusive or meaning any one or any com-
bination. Therefore, “A, B or C”or “A, B and/or C” mean “any
of'the following: A; B; C; Aand B; A and C; Band C; A, B and
C.” An exception to this definition will occur only when a
combination of elements, functions, steps or acts are in some
way inherently mutually exclusive.

Certain details are set forth below in order to provide a
thorough understanding of various embodiments of the
invention, albeit the invention may be practiced through many
embodiments other that those illustrated. Well-known logic
and operations may not be set forth in detail in order to avoid
unnecessarily obscuring this description. Moreover, the illus-
trated embodiments of the disclosure, and the description
associated therewith, should be considered as examples of the
principles of the invention and not intended to limit the dis-
closure to those specific embodiments. It should be under-
stood that this disclosure covers all modifications, equiva-
lents, and alternatives falling within the spirit and scope of the
present disclosure.

1. General Network Architecture

Referring to FIG. 1, a general block diagram of a first
networked electronic device 100 (e.g. wireless device) and a
second networked electronic device 110 (e.g. server) commu-
nicatively coupled via a network 120 is shown. Collectively,
wireless device 100 and server 110 support policy enforce-
ment in controlling access and usage of application software.
According to this embodiment of the disclosure, network 120
is a local area network (LLAN) operating in accordance with
any current or upcoming Institute of Electrical and Electronic
Engineers (IEEE) 802.11 standards (e.g., IEEE 802.11a/ac/
b/g/n). However, it is contemplated that network 120 may
support any of a number of other wireless communication
protocols including HiperLan/1, HiperLan/2, or the like.

As illustrated, the infrastructure of network 120 is a col-
lection of electronic devices that is adapted to support com-
munications between wireless device 100 and server 110. The
selection of electronic devices formulating the network infra-
structure may vary, depending on the selected network archi-
tecture.

For instance, although not shown in detail, where network
120 is a wireless local area network (WLAN), the infrastruc-
ture of network 120 may comprise an access point (AP)
communicatively coupled to a controller. Herein, the AP is
configured to establish communications with wireless elec-
tronic devices within its coverage area such as wireless device
100 for example. The controller is configured to monitor
messages received by the AP from different networked elec-
tronic devices, including wireless device 100, and route par-
ticular messages to server 110. As a result, server 110 may be
adapted to provide a user-specific workspace through the
management of applications (e.g. workspace application(s),
wrapped applications, etc.) as well as policies associated with
the particular user.

Alternatively, where network 120 is a local area network
(LAN) supporting wired connectivity, the infrastructure may
comprise one or more data transfer devices, such as manage-
able switch (e.g. 802.1X switch) and router. This network
infrastructure equipment supports communications between
wireless device 100, which also features a communication
port that supports wired connectivity, and server 110.

Referring still to FIG. 1, after a communication path has
been established with wireless device 100 and server 110, itis
contemplated that server 110 (or logic operating in concert
with server 110) may perform device fingerprinting. “Device

10

15

20

25

30

35

40

45

50

55

60

65

6

fingerprinting” involves the monitoring of initial messages
transmitted by wireless device 100 to determine whether this
electronic device is registered to operate on network 120.

One type of “device fingerprinting” involves analysis of
contents within a Dynamic Host Configuration Protocol
(DHCP) Options field of a DHCP Discovery message. Wire-
less device 100 would broadcast a DHCP Discovery message
in efforts to obtain an Internet Protocol (IP) address for use on
network 120. In many cases, the content within the DHCP
Options field suggests capabilities (e.g., information directed
to functionality of the device such as operating system used,
authentication protocol(s) supported, etc.) and/or type of
device (e.g., information to identify the device such as manu-
facturer name, product name, etc.), which may assist server
110 to determine whether wireless device 100 should be
permitted to operate on network 120 as well as what work-
space, wrapped applications and policies should be provi-
sioned. Herein, the device capabilities and/or device type
information, which are explicitly identified or inferred, may
be generally referred to as “device characteristics”. The
device characteristics may be stored in device specific data-
base 294 as shown in FIG. 2.

More specifically, if server 110 is unable to recognize an
identity of wireless device 110 as the device characteristics is
not identifiable, wireless device 110 may be placed into a
guest provisioned role, which restricts its access to network
resources. In some cases, it may prohibit access to network
resources.

Another type of “device fingerprinting” may involve server
gaining access to a media access control (MAC) address of
wireless device 100. This may be accomplished by extracting
the source MAC address from signaling originating from
wireless device 100. The MAC address of wireless device 100
is compared to stored MAC addresses for devices that have
been previously been registered. If the MAC address of wire-
less device 100 fails to match any of the stored MAC
addresses, server 110 provisions wireless device 100 as a
guest in which the workspace and wrapped applications may
be quite limited and not customized for that particular wire-
less device.

It is contemplated that the stored MAC addresses for pre-
viously registered wireless devices may be contained within a
MAC table, which is updated at a periodicity selected by the
network administrator. Hence, if there is no activity from one
of'the wireless devices for a predetermined period of time, the
MAC address of that device is removed from the MAC table.
This may avoid legacy electronic devices from nefariously
gaining access to network 120 from outside the building.

Yet another type of “device fingerprinting” may involve
server 110 comparing a username provided during an initial
message exchange between wireless device 100 and server
110. The username provided by wireless device 100 may be
compared to active usernames that are used by previously
authenticated wireless devices and stored within network
infrastructure 120 and/or server 110 (or an authentication
system communicatively coupled with server 110).

Referring now to FIG. 2, an exemplary detailed block
diagram of the internal logic within networked devices, such
as wireless device 100 and server 110 communicatively
coupled via network 120 is shown. As shown, wireless device
100 comprises one or more processors 200 that are coupled to
communication interface logic 210 via a first interconnect
220. Communication interface logic 210 enables communi-
cations with other electronic devices, such as server 110 over
private and/or public networks. According to one embodi-
ment of the disclosure, communication interface logic 210
may be implemented as one or more radio units (e.g. trans-

US 9,326,145 B2

7

mitter logic, receiver logic and/or transceiver logic,) for sup-
porting wireless communications with other electronic
devices. In the alternative, or additionally, communication
interface logic 210 may be implemented as a physical con-
nector including one or more ports for wired connectors.

Processor(s) 200 is further coupled to non-volatile memory
230 and/or volatile memory 232 via a second interconnect
225. According to one embodiment of the disclosure, non-
volatile memory 230 may include a shared data store 235 as
well as a workspace application 240 and one or more wrapped
applications 250,-250,, (where N=1), where the applications
are run in a sandbox environment. As discussed herein, the
sandbox environment is a limited and tightly controlled
execution environment provided by a software operating sys-
tem (not shown) executed on wireless device 100 by proces-
sors(s) 200. In the sandbox environment, each application
(e.g., workspace application, wrapped applications, and
unwrapped applications) is “sandboxed” (i.e., executed) in
the user environment with its own set of resources, and with-
out access to a kernel, as well as other resources provided by,
the software operating system of wireless device 100.

Workspace application 240 comprises a management
engine 242 and a policy enforcer 244. Management engine
242 is logic that is adapted to generate and control a particular
workspace associated with the user, where the workspace
may be represented by a springboard, dashboard or other type
of display screen (see FIG. 7 for example) that illustrates
icons associated with wrapped applications 250,-250,.
Workspace application 240 may be automatically provi-
sioned from server 110 after digital fingerprinting of wireless
device 100. Certain management functionality of workspace
application 240 is described below.

It is noted that a list of “unwrapped” applications, namely
applications that have not undergone binary instrumentation
to enable control through administrator-defined security poli-
cies, may be downloaded to workspace application 240 as
part of the configuration payload. Management engine 242
controls display of the list of unwrapped applications on the
workspace springboard as “recommended applications” for
the user to download from one or more sources (e.g.,
Google® Play® store, Apple® App Store™, Amazon® App-
store, Windows® Phone store or BlackBerry® World™ app
store, or combinations of such public application stores). So,
when the user selects one of the icons or listed application
names presented on the workspace springboard, the user is
prompted to download and install the application from that
source.

According to one embodiment of the disclosure, policy
enforcer 244 is code added as part of workspace application
240, normally by placement within a first library of a dynamic
load library, which is part of the binary executable application
of' workspace application 240. Policy enforcer 244 is adapted
to intercept certain system and framework (e.g. application
programming interface “API”-based) function calls from
workspace application 240 and alter these function calls to
enforce policies applied to the workspace. Such policies may
be uploaded from a policy store 292 within server 110 upon
connecting to network 120.

These policies are subsequently stored within shared data
store 235, where such policies are accessible by policy
enforcer 244 within workspace application 240 as well as
policy enforcers 252,-252,, within wrapped applications
250,-250,,. The policies within shared data store 235 are
periodically updated by one of policy enforcers 244,
252,, ... or 252, that establish communications with server
110 to download current policies from policy store 292.

10

15

20

25

30

35

40

45

50

55

60

65

8

Wrapped applications 250, -250,, are software applications
that, when launched, are directed to perform intended opera-
tions, provided such operations do not violate any policies
maintained by policy enforcers 252,-252,, respectively.
Similar to discussions above, each policy enforcer 2524, . . .,
or 252, is code injected during binary instrumentation at
server 110 to be an integral part of wrapped applications
250,-250,,. For instance, by placement of policy enforcer
252, (1=i=N) within wrapped application 250,, namely as a
first library of a dynamic load library being part of the binary
executable application of wrapped application 250,, policy
enforcer 252, is adapted to enforce policies pushed by server
110 on actions and events conducted by wrapped application
250,, normally through system or framework function calls
interception and alteration. Herein, the policies may be user-
based (e.g. privileges, permissions, etc.) or may be directed to
factors associated with wireless device 100 such as geo-fenc-
ing, time-fencing, motion-fencing, network-fencing, device
connectivity, device-state, or the like. These policies, which
may be identical to or different than the policies associated
with workspace application 240, are also uploaded from
policy store 292 within server 110 to shared data store 235.

The specifics of the binary instrumentation, otherwise
referred to as the wrapping process, are described below and
illustrated in FIGS. 3A-3C.

Referring still to FIG. 2, server 110 comprises one or more
processors 260 that are coupled to communication interface
logic 262 via a first interconnect 264. Communication inter-
face logic 262 enables communications with other electronic
devices, such as wireless device 100 over private and/or pub-
lic network. According to one embodiment of the disclosure,
communication interface logic 262 is normally implemented
with one or more ports for wired connectors, although wire-
less connectivity may be supported.

Similar to wireless device 100, processor(s) 260 is further
coupled to non-volatile memory 270 and/or volatile memory
272 via a second interconnect 266. According to one embodi-
ment of the disclosure, non-volatile memory 270 may include
application instrumentation logic 280, policy definition man-
agement logic 282, policy evaluation logic 284, enterprise
application store 290, policy store 292 and a device specific
database 294.

Application instrumentation logic 280 is adapted to per-
form binary instrumentation (wrapping) operations on an
uploaded application, which includes the binary executable
application as well as accompanying binary non-executable
files such as configuration files (sometimes referred to as
“property list files”) and/or resource files. The resultant
wrapped application is subsequently stored in enterprise
application store 290 and later accessed for downloading to
wireless device 100.

As an illustrative example, the configuration file accompa-
nying the executable application may include an information
property list “information.plist” for one type of wireless
device 100 (e.g. Apple® iPhone®) and an Android® Mani-
fest file “AndroidManifest.xml” for another type of wireless
device 100 (e.g. Android®-based phone). Each of these con-
figuration files may include a unique identity for the wrapped
application, one or more Uniform Resource Locators (URLs)
that the wrapped application supports, document type(s) that
the wrapped application supports, operations that require cer-
tain privileges or permissions, etc.

Resource files may contain all the internationalization and
localization information for the wrapped application. This
information enables the wrapped application to be adapted to
various languages and regions without substantial coding
changes along with text translation.

US 9,326,145 B2

9

Policy definition management logic 282 is adapted to
receive one or more security policies uploaded from a com-
puting (electronic) device 150, such as a computer utilized by
a network administrator. Computing device 150 is loaded
with policy definition user interface logic 295 that enables the
network administrator to create security policies to be
observed by networked electronic devices such as wireless
device 100. These security policies are uploaded to policy
definition management logic 282, which stores such security
policies within policy store 292 for later distribution.

Policy evaluation logic 284 conducts policy evaluation,
based on information provided by wireless device 100 to
determine compliance with certain policies before an event
occurs. For instance, policy evaluation logic 284 may be used
to determine, based on information received from wireless
device 100 and analysis with policies stored on policy store
292, whether geo-fencing or time-fencing policies have been
complied with before a certain wrapped application is provi-
sioned to (or de-provisioned from) wireless device 100.

Device specific database 294 is adapted to store informa-
tion about each registered electronic device, including wire-
less device 100, that are configured to make calls to server
110. Such information may include an indication of the reg-
istered electronic device is jailbroken or not; media access
control (MAC) address; OS type; OS version; hardware spe-
cifics; and/or cryptographic protocol supported.

II. Operational Flows of Functions Utilized and Supported
by the Wireless Device and the Server

A. Binary Instrumentation

One of the purposes of binary instrumentation (wrapping)
is to enable sandboxed applications 240 and 250,-250,, of
FIG. 2, which are running on wireless device 100, to seam-
lessly communicate with each other through pre-defined
security policies. Hence, wrapping of an application provides
a mechanism to control certain application behaviors in
accordance with selected security policies.

Referring now to FIGS. 3A-3C, exemplary flow diagrams
of operations for binary instrumentation (wrapping) of an
application, where at least the behavior of the binary execut-
able application is modified in accordance to selected security
policies. As shown, binary instrumentation involves static
policy injection and dynamic policy injection.

As shown in FIG. 3A, upon receipt of an application, the
application instrumentation logic within the server adds addi-
tional code (referred to as a “policy enforcer”), which
includes an additional dynamic library to the binary execut-
able for example (blocks 300 and 305). The policy enforcer is
configured to intercept and modify certain framework (e.g.,
object-oriented code such as “Objective-C”) and system (e.g.
machine code such as “Native C”) calls, at run-time, to
enforce security policies provided by the server. Besides
insertion of the policy enforcer within the binary executable
application, operations are performed on the non-executable
files (e.g. configuration and/or resource files) associated with
the application as describe in FIG. 3B.

1. Static Policy Injection

Referring now to FIG. 3B, an illustrative embodiment of
the static wrapping operations performed by application
instrumentation logic 280 of FIG. 2 is shown. Initially, after
receipt of an (unwrapped) application, a determination is
made whether the binary executable application has been
wrapped (blocks 300 and 330). If not, the policy enforcer (e.g.
policy enforcer 252,), being code that intercepts and/or modi-
fies framework and system calls, is inserted into the binary
executable of the application to produce a wrapped applica-
tion such as wrapped application 250, of FIG. 2 for example
(block 335). According to this embodiment of the disclosure,

10

15

20

25

30

35

40

45

50

55

60

65

10

the policy enforcer is implemented as the first library of the
dynamic load library. After the binary executable has been
wrapped, a determination is made as to whether there are any
non-executable files to be modified (block 340).

As part of the wrapping process, each wrapped application
(inclusive of the binary executable and the non-executable
files) is assigned a unique identifier (block 345). According to
one embodiment of the disclosure, this identifier may include
the name of the workspace of which the application under-
going the wrapping operation is to be a member.

Additionally, since each wrapped application is launched
by use of its URL, during the wrapping process, each URL
associated with a particular application undergoing the wrap-
ping operation is altered (block 350). For instance, according
to one embodiment of the disclosure, the URL for the par-
ticular application undergoing the wrapping operation is
modified to include the unique identifier assigned to the
wrapped application. Additionally, new URLs may be added
to the configuration files of the wrapped application so that
only the workspace and the other wrapped applications asso-
ciated with that workspace can launch the wrapped applica-
tion. For certain applications, such as the browser, a pre-
defined set of URLs are added to the wrapped application,
based on the known set of protocols that the application
handles.

Furthermore, during the wrapping process, the document
type(s) permitted for use by the wrapped application are
defined (block 355). This may be accomplished by defining a
corresponding new document type for all document types
defined in the wrapped application. According to one embodi-
ment of the disclosure, the new document type name is
defined by using the unique identifier assigned to the wrapped
application. The types of files that the new document type can
handle are defined to be the same set as that of the predefined
type that it is based on.

Also, the wrapping process is adapted to manipulate the
privileged and/or permissions associated with the wrapped
application (block 360). In particular, in accordance with
security policies, if there are any privileges or permissions
that need to be changed, these privileges or permissions are
changed during static policy injection.

Lastly, the wrapping process is adapted to manipulate set-
ting in resource files of the wrapped application (block 365).
Such setting changes may alter the language and other display
and playback aspects based on region.

2. Dynamic Policy Injection

Referring back to FIG. 3A, after static policy injection, the
wrapped application (e.g. wrapped application 252,) is
downloaded to the wireless device (block 310). When the
wrapped application is launched at run-time, the dynamic
policy injection process is conducted (block 315).

More specifically, as shown in FIG. 3C, when the received
wrapped application is launched, the executable of the
wrapped application begins to run (blocks 370 and 375). As a
result, the library initialization function is called. Since the
dynamic library corresponding to the policy enforcer is con-
figured to be the first library in the dynamic load library, the
policy enforcer is initiated and begins execution (block 380).

When the executable of the wrapped application begins to
run, the policy enforcer runs first and changes the in-memory
symbol table by replacing the symbols for the intercepted
system calls with the ones that are predefined to replace those
basic calls (block 385). Additionally, the framework calls of
the binary are replaced with predefined calls, for example,
using a technique called “Method Swizzling,” where Objec-
tive-C code patches with the framework call modifications
may be utilized (block 390).

US 9,326,145 B2

11

However, in supporting objected-oriented processing,
there may be an additional need to intercept methods that are
defined as part of an interface. Name of the class that imple-
ments the interface are not always known at runtime. In this
case, a function is intercepted where corresponding object
implementing the interface is passed as a parameter. In this
function, the classname is found and then interception hook
for the interested method is installed.

Thereafter, the executable application runs with its behav-
ior controlled by the policy enforcer (block 395). In the
replaced framework and system calls, the security policy
check is conducted first and any action(s) that needs to be
taken are performed before executing any of these function
calls.

B. Inter-Application Communications

The injection of a policy enforcer is conducted, in part, to
provide a mechanism where the sandboxed applications, that
now have undergone binary instrumentation and part of the
same user workspace, can communicate with each other.
Running in wrapped application 250, (1=i=N) of FIG. 2,
security policy enforcer 252, receives security policies pro-
vided from server 110 and enforces the security policies on
the actions and events of the application. Other non-execut-
able files, included as part of wrapped application 250,, are
also processed.

1. Launch Targeted Wrapped Application

Referring to FIG. 4A, an exemplary flow diagram of the
operations performed by a policy enforcer of a wrapped appli-
cation to logically relate other wrapped applications within
the same workspace to allow communications between these
wrapped applications is shown. As part of the wrapping pro-
cess, each wrapped application is assigned a unique identifier.
Also, unique URLs and document types may be assigned to
correspond to URLs and document types that the wrapped
application already handles (blocks 400, 405 and 410). For
some applications, new URLs and document types are added
to the appropriate definition files of the wrapped application.

Thereafter, when the wrapped application attempts to
launch, the policy enforcer of the wrapped application first
checks if the targeted application is part of the workspace
(blocks 415, 420 and 425). If the targeted application is not
part of the workspace, an error message is displayed to indi-
cate a launch failure for the targeted application (block 430).

However, if the targeted application is part of the work-
space, a determination is made if the wrapped application is
permitted to launch the targeted application, as defined by the
security policies associated with the platform provided by the
wireless device (block 435). More specifically, for a wrapped
application, the policy enforcer may change the behavior of
the wrapped application by intercepting and changing a URL
associated with the targeted application before the URL goes
to the platform for launching the targeted application. As a
result, based on the interception and modification of the URL
by the policy enforcer, the wrapped application may be
allowed to or prevented from launching the targeted applica-
tion (blocks 440 and 445).

2. Information (Document) Exchange

Referring to FIG. 4B, based on the security policies
received from the server and locally stored, if a wrapped
application tries to open a document in another application,
the list of ““available” applications, as selectable options to the
user, is displayed (blocks 450 and 455). As an example, the
list may be a drop-down list, displayed in the workspace,
which contains the names of applications that may be opened
by the user.

According to one embodiment of the disclosure, during
enforcement of certain security policies, the policy enforcer

10

15

20

25

30

35

40

45

50

55

60

65

12

may be adapted to remove some applications provided in the
workspace from the list as these applications are not available
for document exchange (block 455). As a result, the list is
restricted to include applications that are (a) part of the work-
space, and (b) in compliance with security policies defined on
the server. For example, two wrapped applications belonging
to the same workspace may still not be able to share a docu-
ment because of the fact that they belong to different appli-
cation groups that are not allowed, by security policies, to
exchange documents with each other. A “document” is gen-
erally defined as text, image(s), video, or any content or data
that is associated with and/or produced by a particular appli-
cation.

Upon selection of the target application, being an applica-
tion listed as being available for document exchange, the
policy enforcer of the wrapped application intercepts certain
framework and system calls to launch a selected wrapped
application corresponding to the targeted application from
which documents are requested to be shared (blocks 460 and
465).

When two wrapped applications pass documents to each
other, document exchange communications are secured by
encrypting the shared document using a shared encryption
key (blocks 470 and 475). More specifically, the document
encryption key is stored in the shared data store 235 of FIG. 2.
Herein, the wrapped application (source) encrypts the docu-
ment before passing it over to the targeted wrapped applica-
tion (destination), and the targeted wrapped application
fetches the encryption key from the data store and decrypts
the document before starting to use it.

It is contemplated that, based on the security policies
defined by the network administrator, the same document
exchange encryption key could be used by all wrapped appli-
cations that belong to the same user workspace, or different
encryption keys may be used for different groups of wrapped
applications within the workspace. For example, all of the
wrapped applications permitted to operate offline could uti-
lize a first shared encryption key, whereas all wrapped appli-
cations that are permitted to operate only when online could
use a second shared encryption key different than the first
shared encryption key.

It is contemplated that different platforms for different
wireless devices may support inter-application communica-
tions through various means. However, the purpose is the
same—allowing these wrapped applications to work together
in a collaborative way to provide the best user experience and
productivity to the user. On certain platforms, when the user
wants to share information from one application to another,
such as the document exchange described above, the platform
provides some basic default options such as sending that data
over electronic mail (email), storing that data on the device, or
being able to view that data on the same device or another
device. In a secure workspace that is controlled by the secu-
rity policies, all these options need to be controlled. The
policy enforcer displays only those options to the user that are
allowed by the security policies defined on the server.

For protecting the privacy of the data, even when the
default options are displayed to the user, the underlying
default applications that get launched when the user chooses
aparticular selection are changed to launch the corresponding
wrapped applications that are part of the same workspace. For
example, if the platform provides an option to email a docu-
ment that the user would like to share, when the user chooses
that option, instead of the default platform-provided email
application getting launched, the policy enforcer changes the
app-launch call to launch the wrapped email application that

US 9,326,145 B2

13

is part of the same workspace as the source application that is
user is sharing the document from.

C. Workstation Integration

Although, as shown in FIG. 2, workspace application 240
and wrapped applications 250,-250,, are independent (sand-
boxed) applications, the following approach is designed to
inter-relate these wrapped applications 240 and 250,-250,,.

Referring now to FIG. 5, an exemplary flow diagram of the
operations conducted to logically relate a workspace appli-
cation to wrapped applications in order to provide a logical
environment that, through a graphics user interface (GUI)
display, conveys a perception to the user that the wireless
device is operating in an enterprise-controlled workspace is
shown. Herein, in response to an attempt to launch the work-
space application (block 500), the user is required to be
authenticated using her enterprise credentials (block 505).

As shown in FIG. 6A, user authentication may be con-
ducted through active directory (AD) authentication (or other
forms of well-supported two-factor authentication). Accord-
ing to this embodiment of the disclosure, login screen 600 is
provided under control of the workspace application to allow
the user to enter her enterprise credentials 605 for comparison
to authenticate the user. Upon authentication, the workspace
is configured for the user by downloading the appropriate
applications.

Alternatively, as shown in FIGS. 6B and 6C, a personally
configured pass code may be used, where the pass code is
preset beforehand upon initial launching of the workspace. As
shown in FIG. 6B, the pass code is preset by providing the
user with a Set Passcode dialog box 620 for entry of the pass
code by the user. Thereafter, the user will be provided with a
different dialog box 630 for later user authentication as shown
in FIG. 6C. Where the user chooses a policy compliant pass
code, the policy for which has been configured on the server
by the network administrator is previously pushed down to
the workspace. Herein, the workspace application locally
authenticates the user.

When provided access to the workspace, the user is pre-
sented with a display screen 700 (e.g. springboard or home
screen) that displays all icons 710 associated with the
wrapped application that are permitted for the user based on
security policies as shown in FIG. 7 (block 510). Any avail-
able application may be launched by selecting one of the
application icons.

However, as returning back to FIG. 5, before rendering the
display screen, the policy enforcer applies the security poli-
cies and locks any of the received wrapped applications that
are to be locked based on a variety of factors (block 515). One
factor for locking an application may be based on an admin-
istrator’s determination to manually lock the application.
However, awrapped application could be locked by the work-
space due to one of the following reasons: (1) geo-fencing
policy—the wrapped application should not be used at the
current geographical location of the device; (2) time-fencing
policy—the wrapped application is not supposed to be used at
the current time; (3) motion-fencing policy—the application
is not supposed to be used due to the device being in motion
and beyond a policy-defined speed; (4) network-fencing
policy—the device is on a network from which the applica-
tion should not be accessed; (5) online application policy—
the device is offline but the application is configured to be
used only when the device is online (on the Internet); and/or
(6) device-state policy—the application is locked due to the
device being jailbroken, or the subscriber identification mod-
ule (SIM) chip is replaced, or certain other device attributes
have changed or not available for access (e.g. camera, etc.).

10

15

20

25

30

35

40

45

50

55

60

14

In the event that lock policies for all of the wrapped appli-
cation cannot be evaluated, such as where related information
is not being available (e.g. geographic location services are
turned off to disrupt geo-fencing constraints), the workspace
takes a fail-close approach and locks the wrapped application,
thereby precluding the user for using the wrapped application
unless security policies can be analyzed (blocks 520 and 525).

After applying the lock policies, the wrapped and
unwrapped applications associated with the user workspace
are displayed (block 530). As shown in FIG. 7, where a
wrapped application is locked, lock icon 720 is provided to
overlay icon 730 associated with that wrapped application in
order to provide the user visibility as to what applications
within the workspace are available to her. Of course, it is
contemplated that, in lieu of conducting a locking operation,
the wrapped application(s) could be de-provisioned so that no
icon of the wrapped application is displayed.

If a user launches an “unwrapped” application, a list of
unwrapped applications may be displayed to selectively
download and install (blocks 535 and 540).

However, where the user launches a wrapped application
from the workspace, as shown in FIG. 8, afloating toolbar 810
is displayed on a window or display screen 800 associated
with the launched wrapped application. According to one
embodiment of the disclosure, floating toolbar 810 provides
the navigation options such as returning to the workspace, or
switching to another wrapped application that belongs to the
workspace.

According to one embodiment of the disclosure, floating
toolbar 810 displays a plurality of user interface (UI) compo-
nents that may be selected by the user. These Ul components
include (a) Home 820, (b) Recently Used Applications 830,
(c) Favorites 840, and (d) Virtual Private Network (VPN)
Status 850, which are described below:

(a) Home 820: While a wrapped application is running, if
the user wants to go back to the workspace display
screen (e.g., provided as springboard, dashboard, etc.),
the user selects Home button 820 on toolbar 810 to
return to the workspace display screen.

(b) Recently Used Applications 830: As the name suggests,
this UI component on toolbar 810 displays a list of
entries that collectively identifying the wrapped appli-
cations that were recently used. The user can activate
any of'the listed wrapped applications to launch, without
having to go to the workspace display screen illustrating
the wrapped applications in order to launch that wrapped
application.

(c) Favorites 840: The user can create a list of favorite
wrapped applications that she uses frequently in her
workspace. This Ul component assists the user to easily
switch between her favorite applications without have to
go to the workspace display screen illustrating the
wrapped applications in order to launch that wrapped
application.

(d) VPN Status 850: This Ul component appears if the
wrapped application is configured for an application-
specific VPN tunnel. It displays the status of connectiv-
ity for the VPN tunnel, especially no VPN tunnel where
the wireless device is already on the corporate network,
the VPN tunnel is already connected and/or the VPN
tunnel is disconnected. If the VPN tunnel is established,
the user can select this Ul component to get the details of
the connection, such as “Packet In” and “Packet Out”
information.

Referring back to FIG. 5, the launching of a wrapped

application from the workspace, the switching among the
wrapped applications through the use of floating toolbar 810,

US 9,326,145 B2

15

and the returning to the workspace using floating toolbar 810,
all collectively provide an experience as if the user were
operating in a desktop or virtual device that contained only
the workspace application and other wrapped applications
that belong to the workspace.

Moreover, if multiple workspaces are provisioned to wire-
less device 100 of FIG. 1, when the user logs into a work-
space, she just operates in that workspace and uses the appli-
cations that are part of that workspace—as if a single physical
device is converted to multiple virtual devices. Each virtual
device is represented by a workspace application and the
wrapped applications that are administrator configured to be
part of that workspace.

If a wrapped application belonging to a workspace is not
launched from that workspace, the user is asked to authenti-
cate before launching the wrapped application (blocks 545-
555 and 565). For example, if the user manages to launch the
application through platform-specific means other than the
workspace, the user will be prompted to authenticate, using
the enterprise credentials or the pass code, depending on the
security policies configured by the network administrator.

Similarly, when the user switches directly between the
wrapped applications of a workspace, using the floating tool-
bar 810 of FIG. 8, the user is not asked to authenticate as the
user is interpreted to be operating within the workspace
(blocks 560 and 565). The above described behavior is
achieved by the following approach:

1) The workspace application stores the user pass code in
the shared data store before launching the wrapped
application.

2) The wrapped application after launch fetches the pass
code from the shared data store and refrains from
prompting the user to enter the pass code. The wrapped
application then deletes the pass code from the shared
data store.

3) The same approach is taken when a wrapped application
is launched from another wrapped application, using the
floating toolbar.

4) If a wrapped application is not launched from either the
workspace or from the floating toolbar, the wrapped
application is unable to obtain the pass code from the
shared data store, and thus, the policy enforcer of the
wrapped application prompts the user to enter the pass
code.

The workspace also provides a view of the unwrapped
applications to the user. Being “unwrapped,” these applica-
tions are not controlled by the administrator-defined security
policies. Instead, these “unwrapped” applications could only
be controlled by certain high-level security policies (e.g.
installation, uninstallation, etc.) if the server manages the
wireless device.

It is contemplate that, if the wireless device is not config-
ured to be managed by the server, those unwrapped applica-
tions configured by the administrator may be adapted to
appear on the user’s workspace as recommended applications
that the user can explicitly install from the public application
stores as described above. Hence, wrapped applications and
unwrapped applications may appear on the same workspace
springboard, but are differentiated by different view of the
different application groups.

D. Workstation Auto-Provisioning

As describe above, server 110 of FIG. 2 defines policies for
configuring the workspace (e.g., which applications belong to
the workspace as determined dynamically by the user-spe-
cific Role-based Access Control “RBAC” authorization poli-
cies defined in an enterprise directory such as Active Direc-
tory “AD” or in some other policy manager) as well as defines

10

15

20

25

30

16

security policies applied by workspace application 240 and
wrapped applications 250,-250,, for the entire workspace.
When wireless device 100 is registered for the application
control services, after successful user authentication, based
on the user-specific policies, workspace application 240 and
all of the applications that belong to its workspace are auto-
matically provisioned to wireless device 100 as described
below.

1. Workstation Auto-Provisioning (Cleanup)

Referring to FIGS. 9A-9D, exemplary flow diagrams and
screen shots of a first illustrative embodiment for automatic
provisioning and de-provisioning of wrapped applications
within the workspace are shown. Prior to provisioning the
workspace application, it is contemplated that one or more
applications uploaded on the server undergo a wrapping pro-
cess (binary instrumentation), which may be conducted
through an automated process or at least partially through
manual input by the administrator. The wrapped applications
are then stored on the server.

The useruses a browser to open the device enrollment page
that is provided by the server. The user authenticates using his
credentials against the server. After successful user authenti-
cation, the server pushes a configuration payload (file) asso-
ciated with the workspace to the device. The user is prompted
to install that configuration payload on the device, after which
the server pushes the workspace application to get installed
on the device.

After the workspace application is successfully installed
(block 900), as an optional operation as represented by
dashed line, user authentication may be initiated upon launch-
ing the workspace application for the first time (block 905).
After successful authentication, if user authentication is nec-
essary, the workspace application fetches the catalog of
wrapped applications that are provisioned for the user (block

35 910

40

45

50

55

60

65

Thereafter, the workspace application then automatically
requests all of the wrapped applications from the server
(block 915). The server responds by sending the wrapped
application payload and a corresponding configuration file
for each application (block 920). The workspace application
then schedules the installation of each wrapped application
into memory of wireless device. On some platforms, the
workspace application just has to point to the server and
provide the platform with a single configuration file that has
the information of all the wrapped applications that belong to
the user’s workspace. For this embodiment, the workspace
application fetches the application payload directly from
other networked sources, different than the server, and installs
the wrapped applications (as well as any unwrapped applica-
tion).

As part of the configuration change on the server, when a
particular wrapped application needs to be de-provisioned
from a user’s workspace, the server dynamically creates a
cleanup application corresponding to the wrapped applica-
tion that has been de-provisioned (blocks 925 and 930). This
cleanup application is given the same application identifier as
that of the wrapped application, and a higher application
version number so that the cleanup application acts as an
upgrade for the wrapped application installed on the user’s
device.

The cleanup application does not contain any upgraded
binary, data or configuration files. Rather, the cleanup appli-
cation just contains the code to remove all the data that was
created by the wrapped application at its initial launch.

When the workspace application or the other wrapped
applications fetch the policies from the server, and the poli-
cies are evaluated, the workspace application requests the

US 9,326,145 B2

17

application upgrade for the application that has been de-
provisioned from the workspace. This request is satisfied by
the server, and cleanup application (“Application”) 950 gets
installed on top of the de-provisioned wrapped application
(block 935), as an upgrade as shown in FIG. 9B.

Returning back to FIG. 9A, when the user initially
launches the cleanup application where the user thinks the
original wrapped application is being launched from the
workspace, the cleanup application performs cleanup opera-
tions by removing all data created by the de-provisioned
wrapped application and terminates (blocks 940 and 945).
The cleanup application creates a configuration markup in the
shared data store to indicate that it has performed the cleanup
operations successfully. This configuration markup may cor-
respond to the setting of a flag with data store 235 of FIG. 2
that is associated with the de-provisioned wrapped applica-
tion to indicate that the cleanup operation has been com-
pleted.

Hence, as shown in FIG. 9C, the next time the user
launches the workspace, the workspace removes the applica-
tion icon 950 corresponding to the de-provisioned wrapped
application from the springboard after reading the configura-
tion markup from the data store (blocks 955-965) as shown in
FIG. 9D.

2. Workstation Auto-Provisioning (Wipe)

Referring to FIG. 10, an exemplary flow diagram of a
second illustrative embodiment for automatic de-provision-
ing a wrapped application within the workspace to remove
configuration data while retaining execution of the wrapped
application is shown. In some cases, a wrapped application
belonging to a workspace may not be completely de-provi-
sioned. Instead, in response to detecting certain security trig-
gering events, the policy enforcer of the wrapped application
deletes data associated with the wrapped application such as
configuration data, customizations, or the like (block 1000
and 1005). Examples of certain types of security triggering
events triggers may include, but is not limited or restricted to
(1) the wireless device going offline beyond a predetermined
period of time; (2) the wireless device has been jailbroken; (3)
the user has left the company; (4) certain device attributes
have been replaced or are compromised (e.g. removal of
network SIM chip); or (5) an elapsed time between activation
of this workstation auto-provisioning “wipe” scheme has
elapsed.

Alternatively, in lieu of security triggering events associ-
ated with the wireless device, it is contemplated that these
events may be in response to events or actions at the server. As
illustrative examples, an application data wipe could be ini-
tiated by a policy definition or policy change on the server, or
the server administrator explicitly choosing to wipe this
described data on particular user device, or even based on the
app’s policy enforcer determining that certain policies have
taken effect and the application data needs to be wiped.

Essentially, the application data wipe could be triggered
from the server and enforced by the policy enforcer running
within the wrapped application. Alternatively, the data wipe
could be triggered by the policy enforcer itself based on the
evaluation of the conditions of the wrapped application, that
of the workspace and of the wireless device.

After it has been determined that the application should be
“wiped’ (i.e. certain data associated with the wrapped appli-
cation should be deleted), the policy enforcer deletes the data
and terminates the application (block 1005).

When the user launches the application for the next time,
the user gets the experience as if she is launching that appli-

5

10

15

20

25

30

35

40

45

50

55

60

65

18

cation for the very first time. This may be accomplished by
removing all stored user configurations and/or customiza-
tions (blocks 1010 and 1015).

E. Application Auto-Provisioning

Referring to FIG. 11A, an exemplary flow diagram
directed to the operations for automatic provisioning and
de-provisioning a wrapped application based on particular
factors is shown. Initially, an administrator performs set-up
operations for application provisioning. First, the server is
configured to identify certain wrapped applications to be
automatically provisioned in the workspace based on selected
factors (block 1100). Thereafter, one or more auto-provision-
ing policies are defined by selected the particular factors for
provisioning, de-provisioning and/or locking the wrapped
application (block 1105). These factors may include geo-
graphic location of the wireless device and/or specified data
and/or time.

After fetching the one or more auto-provisioning policies,
the workspace policy enforcer constantly or periodically
checks if an auto-provisioning policies have been met (blocks
1110-1120). If so, the workspace policy enforcer fetches the
wrapped application from the server and schedules for instal-
lation (block 1125).

After the wrapped application (“APP 13”) has been suc-
cessfully installed as shown by icon 1150 in FIG. 11B and
while the user is using the application, the workspace policy
enforcer continues to monitor for compliance with the auto-
provisioning policy (blocks 1130-1140). Upon determining
non-compliance with the auto-provisioning policy, such as
the user taking the wireless device out of the defined location
or the defined time bracket has expired, the policy enforcer
begins de-provisioning the wrapped application or locking
the wrapped application as shown in FIG. 11C (block 1145).

It is contemplated that the de-provisioning operations may
involve the use of the “cleanup” or “wipe” operations as
described above. Rather than de-provisioning the wrapped
application, the workspace policy enforcer may be adapted to
lock the provisioned, wrapped application to prevent further
use of the wrapped application (APP 13 1150) until the one or
more policies have been satisfied again.

F. Dynamic Security Policy Updates

For security reasons, security policies normally are config-
ured on server 110 of FIG. 2, and thereafter, are “pushed”
down to wireless device 100 and applied to control usage of
wrapped applications 250,-250,. Previously, on most wire-
less devices, the only reliable and predictive way to achieve
immediate application of the security policies is by control-
ling workspace application 240 to run in the background all
the time. However, this continuing running of workspace
application 240 in the background drains battery power.

To combat this problem, as shown in FIG. 12, an exemplary
flow diagram for dynamic updates of security policies with-
out repetitive user authentication is shown. Herein, the work-
space application and other wrapped applications installed on
the wireless device share a common data storage (e.g. data
store 235 of FIG. 2), which is used to enable the workspace
application and/or wrapped applications to communicate
with each other and also to store and access policies down-
loaded from the server.

Herein, upon an initial launch of the workspace applica-
tion, a first user authentication process is conducted in which
the user is authenticated using her established credentials
(blocks 1200 and 1205). After successful authentication, the
workspace application receives a unique session token from
the server (see token 234 of FIG. 2) and writes that session
token to the shared data store (blocks 1210 and 1215).

US 9,326,145 B2

19

Thereafter, upon launching any other wrapped application
at a later time, the wrapped application reads the session
token from the shared data store. The wrapped application
uses the token to authenticate the user in lieu of requesting the
user to conduct a second user authentication process (blocks
1220-1225).

In order to avoid the necessity of the workspace application
running in the background at all times and ensure that the
latest security policies are fetched from the server and applied
to the wrapped applications, the policy fetch from the server
may be performed by every wrapped application running on
the device. Hence, when any wrapped application is
launched, one of the first operations performed by the
launched wrapped application is to determine if the latest
security policies have been fetched (block 1230). If so, the
wrapped application merely applies these security policies
(block 1245). However, if the latest security policies have not
been fetched, the latest security policies from the server are
fetched and written to the shared data store (blocks 1235-
1240). If the latest policies have a change that applies to that
application itself, the application applies the policy to itself
(block 1245).

It is contemplated that, when none of the wrapped appli-
cations or the workspace application are running, the security
policies are not fetched from the server. Rather, the need to
apply the security policies occurs only when either the work-
space application or any of the wrapped applications are
running.

It is further contemplated that policy fetch from the server
could also be configured to be periodic, where the periodicity
is maintained by a timer. This security policy checking
mechanism reduces the workload placed the wrapped appli-
cations. Also, when a policy fetch timer is set, the timer is
shared across all the wrapped applications, so the timer keeps
ticking when the user switches from one wrapped application
to another, or between wrapped and unwrapped applications.
If an unwrapped application was running when the timer
expires, the next time the user launches a wrapped applica-
tion, that application fetches the latest policies from the
server.

G. Multi-User Workstation

Certain platforms are designed to be used by a single user.
In one or more embodiments, in user-space virtualization
technology-based workspace, multiple users can securely use
the same device.

Referring to FIG. 13, an exemplary flow diagram of the
operations for virtualization of a multi-user workspace is
shown. Herein, a first user of the device registers the wireless
device with the server. Thereafter, the workspace and other
wrapped applications that belong to the workspace for that
user are installed on the wireless device.

At a later time, a second user registers the same wireless
device in the service (block 1300). Upon determining by the
server that the wireless device has already been registered by
the first user, the configuration policies for the second user are
sent to the workspace (block 1305). Hence, the configuration
policies for the workspace associated with the second user are
downloaded instead of installing a new workspace and all the
wrapped applications all over again. Any additional wrapped
applications that need to be provisioned for the second user,
as the second user could belong to a different user group or a
different role policy applies to her, are downloaded and
installed on the wireless device (block 1310).

When the second user wants to use the workspace, she uses
her credentials to authenticate to the workspace and begins
usage of the workspace (blocks 1315-1320). On successful
user authentication, the workspace further stores data within

10

15

20

25

30

35

40

45

50

55

60

65

20

the shared data store to denote that the second user is the
current user of the workspace (block 1325).

When the user uses any of the workspace applications, the
policy enforcer uses the current user information stored in the
shared data store to apply the user-specific policies (block
1330).

After the second user is done using the workspace, she logs
out of the workspace to allow other users to use that device,
where any new users registering the same wireless device in
the service would follow the sequence of operations describe
above (block 1335).

The workspace could be configured, through security poli-
cies defined on the server, to wipe the entire workspace (and
that of the wrapped apps) whenever a user logs out of the
workspace (block 1340). This configuration would be advan-
tageous where the wireless device is used at a kiosk and the
wireless device is used by many users for short periods of
time.

In certain other instances, again based on the security poli-
cies defined on the server, the workspace could be locked for
specific users during specific predefined times of the day or
certain days of the week, or during certain weeks of the year.

H. Application Notification

On many wireless devices, applications can display notifi-
cations to the user. A “notification” is an event that informs
the user of new information is available for an application.
Each notification provides perceivable information which
may be visible (e.g. an illustrated number displayed on an
icon associated with the application or an alert message) or
auditory (e.g. a sound alert). When the user acts on that
notification, the notification is no longer displayed or perceiv-
able by the user.

In order to provide application notification in the policy
restrictive workspace, notifications could be generated
locally by the application or could be pushed down from the
server to the application. For wrapped applications 250, -
250,, of FIG. 2 corresponding to a workspace, the same
behavior is provided, without relying on the platform support.

Referring to FIG. 14, an exemplary flow diagram of the
operations for supporting notification messages without plat-
form support is shown. Herein, all notification, local or
remote, related calls are intercepted and modified during the
instrumentation process of the binary application that is
marked for creating or receiving notifications (block 1400)

When that wrapped application creates a notification, the
policy enforcer for that wrapped application intercepts the
notification information and stores the notification informa-
tion in the shared data store (blocks 1405 and 1410).

When launched, the workspace application reads the noti-
fication information from the shared data store for all of the
wrapped applications in that workspace (blocks 1415 and
1420). Thereafter, the management logic of the workspace
application generates notification(s) to be perceived by the
user. For instance, the notifications may be displayed on a
display screen with the wrapped applications (block 1425).

After the wrapped application with a notification is
launched, the notification is generated for display (or audio
playback), and a determination is made as to whether the
notification has been acted upon (blocks 1430 and 1435). If
s0, the wrapped application takes action to remove that noti-
fication. Since that call is also intercepted, the policy enforcer
clears the corresponding notification information in the data
store (blocks 1440 and 1445).

Hence, the next time the workspace application is launched
and accesses the shared data store for notification information

US 9,326,145 B2

21

to find that the notification has been cleared for the applica-
tion, the workspace application removes the notification from
the springboard (block 1450).

1. Application Aliasing

It is noted that certain applications are not available on
particular platforms. During policy configuration, server 110
of FIG. 2 needs to be configured to be able to identify which
applications are available on which platforms. Application
aliasing provides a solution for reducing administrative load
associated with maintaining a listing as to which applications
are available to which platform. This is accomplished by
creating an automated equivalency chart for each application
that is uploaded to or fetched by server 110.

As shown in FIG. 15A, an application is uploaded to a
server (block 1500). As part of the wrapping process, the
server extracts information pertaining to application and
stores the information into an enterprise application store
(block 1505). According to one embodiment of the disclo-
sure, the information may include one or more of the follow-
ing: (1) category (e.g., business, games, book, consumer,
sports, productivity etc.); (2) supported platforms; (3) sup-
ported electronic devices; (4) version number; (5) countries
supported; (6) languages supported; (7) Usage Restrictions
(e.g. geographical, age, etc.).

Thereafter, a determination is made as to whether there are
other applications similar to the uploaded application. If so,
according to one embodiment of the disclosure, the server
may be adapted to associate (link) the uploaded application to
other wrapped application that are already available on the
server. An application is determined to be “similar” to another
wrapped application based on whether the application is (i)
part of the same category, (ii) supported by the same plat-
forms, (iii) supported by the same wireless devices, or the
like. Alternatively, in lieu of linking, explicit alias groups can
be created, where the uploaded application is added to an
application alias group (block 1515). An application alias
group is a collection of applications that are similar in behav-
ior, but some or all of the applications in that collection may
not satisty all the platform, device or usability requirements.

Referring now to FIG. 15B, when creating a group of
wrapped application to be provided for a specific user group,
a determination is made whether any applications are not
permitted (or available) on a platform (block 1520 and 1525).
For applications that are permitted, the server provides
options to the administrator to choose an equivalent applica-
tion from the selected application’s alias group (block 1530).
The administrator may select another application from the
group and completes the application bundle definition
(blocks 1535 and 1540).

Referring now to FIG. 15C, the application aliasing pro-
cess can be further automated by defining an alias group that
has only one application that applies to each platform, a
geographical area, or the like (block 1545). During the appli-
cation bundle definition process, the administrator just selects
the application alias and makes it part of the application
bundle (block 1550). Thereafter, during the provisioning of
that wrapped application on a device, the policy enforcer
requests an application from that application’s alias group
based on the device and platform type and application related
restrictions. The server sends that application from the alias
group to the device and the application gets installed (block
1555).

However, as an alternative, instead of the policy enforcer
requesting a specific application from the application alias
group, the server chooses the appropriate application for the
device based on the various attributes defined above. Since
the server already has all the device, platform, geographical

20

40

45

55

22

and user specific information (some provided by the work-
space application to the server), it can easily select the correct
application from the application alias group.

J. Application Containerization (Policy Enforcer in the OS)

Referring to FIG. 16, an exemplary block diagram of
policy enforcer logic 1600 implemented within an operating
system (OS) 1610 is shown. Platform policy enforcer logic
1600 provides a centralized policy control for the workspace
application and one or more wrapped applications in contrast
to the localized policy enforcement scheme of FIG. 2. More
specifically, as set forth in FIG. 2, user-space virtualization in
the form of a policy enforcer is injected in the applications as
part of the wrapping process. Alternatively, as shown in FIG.
16, a similar platform-specific security policy is provided,
where the policy enforcer that is available to applications
operating on the platform.

Herein, platform policy enforcer 1600 is adapted to com-
municate with a server and receive policies. Platform policy
enforcer 1600 could also be configured to communicate with
a single security policy server or multiple policy servers.

Herein, wrapped applications 1652,-1652,, need explicit
privileges to use and to be able to communicate with platform
policy enforcer 1600. All applications belonging to a work-
space are granted the privilege to communicate with each
other and no application outside the workspace. The privilege
is granted by submitting the wrapped application to the plat-
form provider (e.g., OS provider such as Apple for iOS®
platform or Google for Android®-base platform) for the
privilege grant.

Wrapped applications are hosted on server 110 and provi-
sioned to wireless device 110 during enrollment (registra-
tion). Thereafter, platform policy enforcer 1600 controls the
workspace application and all wrapped applications that
belong to the workspace. Platform policy enforcer 1600
fetches the security policies from server 110, perhaps on a
periodic basis, and applies such security policies to each of
the workspace applications installed on wireless device 100.

Application upgrades may be accomplished the same way
as described above. Application provisioning is accom-
plished by platform policy enforcer 1600 determining that a
new application has been added to the workspace and that
application has to be installed on the device. Upon such
determination, platform policy enforcer 1600 simply requests
server 110 for the wrapped application and its non-executable
files, which are downloaded as the application bundle for
subsequent installation.

According to this embodiment, application de-provision-
ing does not require the cleanup application as the policy
enforcer. Rather, platform policy enforcer 1600 can simply
uninstall the wrapped application automatically. Similarly,
since platform policy enforcer 1600 has access to data asso-
ciated with each wrapped application, an application-specific
data wipe can be conducted by issuing a system request to
wipe off the data of any workspace application.

K. Network and Internet Access Controls

Each wrapped application running in the workspace may
be configured by its policy enforcer to control the application
from going to certain Internet Protocol (IP) addresses, uni-
versal resource locator (URL) addresses, hostnames, etc. Fur-
thermore, allowable network and internet traffic may further
be controlled by routing it over a proxy to a specified IP
gateway, may redirect, or may tunnel traffic over a virtual
private network (VPN) tunnel. As discussed in greater detail
below, the policy enforcer of a wrapped application may
intercept certain system calls, and apply the controls as secu-
rity policies.

US 9,326,145 B2

23

As shown in FIG. 17, a wrapped application is launched
and one or more policies are applied to the application via the
application’s policy enforcer (block 1702). As discussed
above, when the wrapped application is launched, the appli-
cation’s policy enforcer fetches current security policies.
These policies, as discussed below, may include policies
directed to which website the wrapped application may
access, what network resources the wrapped application may
access, what controls are to be applied on network access and
communication by the wrapped application etc.

Socket calls relating to network communication are inter-
cepted by the wrapped application’s policy enforcer to deter-
mine an IP address, hostname, network location, website,
type of network communication, etc. being attempted by the
wrapped application (block 1704).

The policy enforcer, which as discussed herein includes the
most recent policies pushed or pulled to the policy enforcer
from server 110, utilizes the policies embedded in the policy
enforcer to determine if there are any special controls for
handling the call (block 1706). In one embodiment, each
socket call made within the wrapped application is checked
against the configured policies in the applications policy
enforcer to determine whether the IP address, hostname, web-
site, etc., which is the subject of the socket call, matches any
policy. When the socket call does not match a policy, the call
is processed (block 1712). However, when the socket call
does match one or more policies, one or more of the policies
are applied to the call (block 1708) to enforce the one or more
matched polices when the call is processed (block 1710).

As an exemplary policy that may be applied by a wrapped
application’s policy enforcer to the processing of a network
and/or internet call, the call may be rerouted according to one
or more policies. When the call is to be rerouted, the IP
address or hostname in the intercepted socket call is changed
to the IP address or hostname in the security policy. The
security policy may then be used by a wrapped application’s
policy enforcer to process the call according to one or more
policies.

The interception of an IP address or hostname in a socket
call may also be used by a wrapped application’s policy
enforcer to apply a VPN tunneling policy. If the IP address
and/or hostname in the socket call is associated with a policy
that enforces traffic tunneling over a VPN, the policy enforcer
may process the socket call by establishing a local loopback
server to receive the socket call. A new VPN tunnel may then
be created by the policy enforcer with the configured VPN
gateway to receive the data packets from the local loopback
server, and tunnel the traffic over the established VPN. Fur-
thermore, tunnels may be established on a per-application
basis, so that each application may use its own VPN gateway.
Additionally, for wrapped applications whose policy enforcer
is configured for a corporate VPN, domain name system
(DNS) calls may also be intercepted by the policy enforcer,
and sent to a DNS server behind the VPN gateway for resolv-
ing hostnames defined on a corporate network.

Similarly, interception of a call to access a URL addresses
may also trigger a wrapped application’s policy enforcer to
control access to specific websites. URLs that should be
blocked by wrapped application may be specified with the
policy definition user interface logic 295 discussed above in
FIG. 2. Optionally, the blocked URLs may also include a
specification of one or more reasons why access to the URLs
are blocked, and/or a custom webpage to be displayed to a
user when the URL is blocked. As discussed above, these
policies include the enforcement mechanisms (i.e., the
blocked URLs, and associated reasons and/or custom web
pages) that are pushed or pulled to the policy enforcers of

10

15

20

40

45

55

24

wrapped applications. A policy enforcer of a wrapped appli-
cation may then create a local loopback server for each block-
ing reason, and launch the local loopback servers when the
wrapped application is launched. Then when the wrapped
application attempts to access the blocked URL, the call can
be intercepted, resolved to the hostname of the corresponding
local loopback server, and the appropriate policy enforced.
The enforcement of the policy may include rewriting the
requested (blocked) URL with a new URL to custom web
page and/or the reasons why the blocking has occurred. Each
local loopback server may be configured to handle a separate
code corresponding to the reasons a URL was blocked.

Furthermore, for secure socket layer (SSL) or transport
security layer (TLS) web page request to be blocked, the
policy enforcer of a wrapped application may establish a
corresponding SSL or TLS local loopback server. In this case,
the policies may be enforced by a wrapped application’s
policy enforcer as discussed above. However, the wrapped
application must also perform the typical SSL or TLS hand-
shake with the local loopback server, including creating a key
pair for the SSL and TLS handshake.

L. Online Applications

Instead of enforcing certain policies as to what websites a
user may visit, what network resources a wrapped application
can access, etc. as discussed above, a wrapped application’s
policy enforcer may be configured to make certain workspace
or wrapped applications “online applications.” An online
application is a wrapped application with one or more a
policies that, when enforced by the wrapped application
policy enforcer, ensure the wrapped application is only avail-
able to a user when device 100 is online and connected to
server 110. Such an online application policy may be valu-
able, for example, in circumstances where up-to-date policies
are essential for data loss prevention reasons, where the
online application is only to be used when connection with an
enterprise server is available, etc.

With reference to FIG. 18, a wrapped application is
launched and one or more policies are applied to the applica-
tion via the application’s policy enforcer (block 1802). One of
the policies may be a policy that, when enforced by the
wrapped application’s policy enforcer, determine whether the
wrapped application is subject to an online application policy
(block 1804). When a wrapped application is not subject to an
online application policy, the process ends.

However, when the wrapped application is subject to an
online application policy (block 1804), the policy enforcer of
the wrapped application checks to determine whether the
device is online and connected to server 110 (block 1806).
When the device is either not online or not connected to the
server, the application is locked (block 1808), as discussed
above. When the device is online and connected to server 110,
the wrapped application’s policy enforcer does not lock the
application thereby enabling the application to be run.
Optionally, as illustrated in dashed line, the wrapped appli-
cation’s policy enforcer may additionally enforce a split key-
based data encryption scheme on all data read, written, or
otherwise manipulated by the wrapped application (block
1810). As will be discussed in greater detail below, split
key-based data encryption requires an application to be
online. Since data that is subject to system read, write, etc.
calls is encrypted with the split key, the wrapped application
will only be able to access (e.g., decrypt) application data
when online.

M. Network Policy Enforcement Based on Application
Context

In the embodiments discussed herein, where a workspace
application and/or wrapped application communicates over

US 9,326,145 B2

25

an enterprise network, data traffic generated by those work-
space and/or wrapped applications may be given special treat-
ment on the enterprise network. That is, identification of the
context associated with a device (e.g., device 100), such as
identifying to the enterprise network that the device is run-
ning a workspace related to the enterprise, enables the enter-
prise network to enforce network polices with respect to the
device, such as ensuring a minimum quality of service for
data traffic to or from the device over the enterprise network.

Referring to FIG. 19A, a workspace application, or alter-
natively a wrapped application, identifies itself to an enter-
prise network to enable an enterprise network to enforce
network policies. A workspace or wrapped application is
launched and one or more policies are applied to the applica-
tion via the application’s policy enforcer (block 1902). The
workspace or wrapped application then communicates data to
a gateway, or to a workspace server for forwarding to the
gateway, to identify one or more of a device, the workspace,
or wrapped application to the network (block 1904). The
identification may include the device’s MAC address, an [P
address associated with the device, an assigned IP address
from a VPN tunnel, port information, a unique identifier
associated with a user of the device, a unique identifier for the
workspace application, a unique identifier associated with a
wrapped application, etc. The various forms of identification
enable network policies to be enforced by an enterprise for a
device, for a workspace, and for individual applications. As
will be discussed in FIG. 19B, the identification enables a
gateway on an enterprise network to enforce network polices
with respect data traffic to or from the workspace or wrapped
application based on the received identifier. The identification
may optionally be injected into data packets (block 1906),
such as into a header, metadata, or other field of the data
packet. The optional injection of the identification into spe-
cific data packets enables network policies to be enforced
against individual wrapped applications that originate the
data, as opposed to network policies applied to a device based
on the device’s MAC address. Those data packets are then
communicated over the network (block 1908).

Now referring to FIG. 19B, an enterprise network gateway
receives network traffic, such as packets of data (block 1952).
In alternative embodiments, other network devices, such as
routers, switches, etc. may be configured to, or be controlled
to, enforce the network policies. The gateway identifies the
network traffic as originating from a workspace application or
wrapped application that is associated with the enterprise
(block 1954). For example, the gateway may compare the
MAC address in data packets with the MAC address of enter-
prise devices in order to determine if the device should be
given preferential treatment on the network. Similarly, the
gateway may attempt to extract identifier(s), which were
embedded in data packets as discussed above, in order to
determine if the device should be given preferential treatment
on the network, and to further enforce per-application and/or
per-user policies. The gateway may then enforce one or more
network policies, such as ensuring a minimum quality of
service, data rate, network asset access, etc., on the network
traffic based on the identification (block 1956).

N. Workspace Application and Wrapped Application
Single Sign on

Single sign on (SSO) capabilities refer to a user entering
credentials to access a secure asset, and then being able to
later access secure assets, without having to re-enter user
credentials. Such a capability is typically provided by a web
browser used to access a website, whereby, the first time the
user authenticates against a website, a SSO token is sent to the
user’s web browser from an authentication process, such as a

25

30

40

45

55

60

26

token generated from a multi-server authentication, authori-
zation, and accounting (AAA) process. When the user visits
another website in the web browser that requires authentica-
tion, and is configured to use the token, the user’s web
browser may simply present the second website the token
rather than having to resupply their credentials. Such a sys-
tem, however, relies on a web browser, and token manage-
ment provided by the web browser.

In one embodiment, wrapped application running in a
workspace that require authentication may automatically
authenticate a user without prompting the user to enter cre-
dentials, subsequent to an initial authentication. The wrapped
application SSO capabilities may be provided with a shared
data store 235, as discussed below in FIG. 20, or without a
shared data store, as discussed below in FIG. 21.

With reference to FIG. 20, a wrapped application single
sign on process, with a shared local policy store, is described.
In the discussion of FIG. 20, workspace application 240 and
wrapped applications 250, through 250, running in the work-
space, have access to the shared data store 235. When a user
initially launches the workspace application, she is authenti-
cated based on user credentials, such as a username and
password (block 2002). The workspace, upon successful user
authentication, requests an encryption key from server 110
(block 2004). This key is used to encrypt the user credentials,
which are then stored in the shared data store 235 (block
2006). The key, however, is only stored in volatile memory
long enough to encrypt the user credentials. Thereafter, the
key is erased, or otherwise removed, from volatile memory.

A wrapped application is then launched by the user, which
requires user authentication (block 2008). Instead of prompt-
ing the user to re-authenticate herself, the wrapped applica-
tion fetches the encrypted credentials from the shared data
store (block 2010) and obtains the encryption key from the
server 100 (block 2012). The wrapped application utilizes the
encryption key to decrypt the encrypted user credentials
stored in shared data store (block 2014), and further checks
whether the decrypted user credentials are current (block
2016). When the decrypted user credentials are current, the
wrapped application uses the decrypted and current user cre-
dentials to authenticate the user to the wrapped application
(block 2018). However, when the decrypted user credentials
are not current, the wrapped application receives new user
credentials (block 2020) and authenticates the user to the
wrapped application based on the new credentials (block
2022). The wrapped application then encrypts the new user
credentials with the server supplied encryption key, and
replaces the out of date encrypted user credentials in shared
data store with the current encrypted version of the user
credentials (block 2024). Although not illustrated, when the
workspace application is closed on wireless device 200, or a
user logs out of the workspace application, the stored
encrypted user credentials are deleted from the shared data
store.

Wrapped application provided by a public application
store (i.e., iTunes®, Android App Store®, etc.) do not have
the same access to the shared data store on device 100, as
discussed above. Thus, such publicly distribute applications,
although wrapped, cannot use the SSO technique discussed
above in FIG. 20. In one embodiment, in order to provide a
SSO experience for publicly distributed wrapped applica-
tions, a shared data store, similar to shared data store 235, is
hosted on an authentication server for publicly downloaded
applications. In one embodiment, server 110 may be the
authentication server, although other servers that provide
authentication services could also be used in accordance with
the discussion below.

US 9,326,145 B2

27

With reference to FIG. 21A, at a wireless device, a user
downloads and installs two or more wrapped applications
from a public application store (block 2102), and launches a
first wrapped application (block 2104). The first wrapped
application authenticates the user based on user supplied
credentials and provides the authentication data to an authen-
tication server (block 2106). The authentication data pro-
vided to the authentication server include, at least, the user
credentials, a device identifier (e.g., the MAC address of
device 100), and the first wrapped application’s unique iden-
tifier.

Now, with reference to FIG. 21B, at an authentication
server, such as a server 110, a AAA server, etc., the user
authentication data, including at least the user credentials, a
wrapped application identifier, and a device identifier, are
received (block 2150). A data record is created in the server
side shared data store, the record including the user creden-
tials, data indicative of the wrapped application, and data
indicative of the user’s device (block 2152). One or more
passcode policies are pushed, as discussed above, to the
wrapped application (block 2154). As will be discussed in
greater detail below, the passcode policies may include a
user’s current passcode, and policies that enable the wrapped
application to utilize the passcode. However, if needed, for
example when no passcode exists for a user associated with
the identified device, the authentication server receives a
passcode from the user (block 2156) and correlates the
received passcode with the data record for the wrapped appli-
cation, as well as other wrapped application associated with
the user and device (block 2158). As discussed in FIG. 21B,
the authentication server stored a data record that correlates
user credentials for different wrapped applications with a
common passcode. This common passcode may be provided
to wrapped applications running in a workspace, to enable the
wrapped applications to authenticate a user via the passcode,
rather than user credentials, as discussed below.

Returning to FIG. 21A, the passcode policies pushed by
authentication server at block 2154 of FIG. 21B, are received
at block 2108 of FIG. 21A. The passcode policies may
include a previously established common passcode, policies
that enable the first wrapped application to authenticate the
user based on the passcode, or a policy that indicates to the
first wrapped application that a new common passcode is
needed (block 2110). Then, whenever the user selects the first
wrapped application, the user may authenticate herself to the
first wrapped application with the passcode (block 2112), and
not her full user credentials.

A second wrapped application is then launched (block
2114), and a policy enforced by the second wrapped applica-
tion determines if this is the first time the second wrapped
application has been launched (block 2116). When the second
wrapped application is launched for the first time, the user
must again authenticate herself to the second wrapped appli-
cation, transmit authentication data (for the second wrapped
application to the authentication serve), and receive the pass-
code policies from the authentication server at the second
wrapped application.

However, if the user has previously launched the second
wrapped application, and has provided authentication data for
the second wrapped application (i.e., the authentication
server has stored user credentials for the second wrapped
application), the second wrapped application first fetches and
applies one or more security policies, including any passcode
policies (block 2118). The passcode, previously established
by the user, may then be used to authenticate the user to the
second application (block 2120). The second wrapped appli-
cation then utilizes the passcode to obtain and apply one or

10

15

20

25

30

35

40

45

50

55

60

65

28

more of the passcode policies, such as fetching and applying
the stored user credentials correlated to a user, device, and
wrapped application at the security server, to the second
wrapped application as a security policy enforced by the
second wrapped application’s policy enforcer (block 2122).

As discussed above in FIGS. 20, 21A, and 21B, the work-
space application and wrapped applications enable the user to
have a SSO experience, without relying on a web browser, or
a AAA authentication service.

O. Secure Workspace Authentication

Since a device, such as wireless device 100, may have
several unwrapped applications and several wrapped appli-
cations, which are run in a workspace as discussed above, it is
possible to have multiple versions of the same application
running on the same device. For example, the same applica-
tion may be run on a device in wrapped and unwrapped form.
As another example, two different users of a device may have
access to the same workspace and application, but use difter-
ent credentials to access the application. Since multiple
instances of the same application, wrapped and unwrapped,
could be running on a device 100, as discussed below in FIGS.
22A and 22B, a multiple layered authentication method is
used to ensure that only the wrapped application for a given
user in a given workspace has access to the corresponding
user-application-workspace data available on a remote work-
space service (e.g., a remote data store, enterprise network,
etc.). In one embodiment, as discussed below, the multiple
layered authentication for a given user, wrapped application,
and workspace utilizes at least a device identifier, a work-
space certificate, and user credentials when attempting to
access the remote workspace service.

With reference to FIG. 22 A, the identification data utilized
for multiple layered workspace authentication are generated.
A workspace is assigned a first unique identifier (block 2202).
When a workspace is provisioned for multiple users on a
single device, each workspace instance is assigned a unique
identifier for each different user. Each user is also assigned a
unique identifier (block 2204). The unique workspace iden-
tifier and unique user identifier may then be combined and
stored as a digital identity for the workspace (block 2206). In
one embodiment, the digital identity is stored at a remote
workspace service accessible to a wrapped workspace appli-
cation. A device identifier, such as a MAC address, and user
credentials are also stored (block 2210). In the described
embodiment, the three items of authentication data enable a
remote workspace service to ensure that a specific device,
specific instance of a workspace, and a specific user is the
only combination of device, user and workspace that may
access the data provided and secured by the remote work-
space service.

In order to access the data or services provided by the
remote workspace service, with reference to FIG. 22B, a
wrapped application is launched from a workspace of a
device (block 2252). It should be noted that since the wrapped
application is being launched from the workspace, it is
assumed that a particular user has already authenticated her-
self to the workspace. Communication is then initiated
between the wrapped application and the remote service
(block 2254) so that the wrapped application can authenticate
itself to the remote workspace service based on a device
identifier for the device, the user credentials used to authen-
ticate the user to the workspace, and the digital identity (i.e.,
the combination of the unique workspace identifier and user
identifier) (block 2256). The remote workspace service may
then processes transactions for the wrapped application after
successful authentication (block 2258).

US 9,326,145 B2

29

P. Secure Workspace File Storage

As discussed herein, wrapped applications include policy
enforcers to enable compliance with one or more security
policies. Previously, those policies have focused on securing
the interaction between a workspace, a workspace applica-
tion, and wrapped applications. As discussed below, reading,
writing, opening, or otherwise accessing data in storage,
whether via regular or memory-mapped data access func-
tions, may also be protected by policy enforcers.

In one embodiment, a regular file function is a system call
by a wrapped application to open, read, write, close, stream
(e.g., fopen, fscanF, fprintF, fget), etc. files in storage via
access to the files themselves. A memory mapped file func-
tion is a system call by a wrapped application to map, unmap,
deallocate, synchronize, control, etc. for accessing files in
storage via a pointer. Policy enforcement to secure both regu-
lar and memory mapped file access will be discussed below.

With reference to FIG. 23, a process for securing files
accesses by a workspace or wrapped application is described.
A workspace application or wrapped application is launched,
and one or more workspace policies are enforced by the
launched application’s policy enforcer (block 2302). The
policy enforcer, via techniques such as “method swizzling”
discussed above, intercepts various system calls to access
data (block 2304). The system calls may be regular file func-
tions to read, write, or otherwise manipulate files stored on a
wireless device, such as wireless device 100. The system calls
may also be memory mapped file function calls, such as
mmap, munmap, vm_deallocate, msync, fentrl, fsync, trun-
cate, ftrucate, etc. to access files in storage via a pointer.

Based on one or more workspace policies enforced by a
policy enforcer of the application attempting to access the
file, the data which is subject to the system call may be
encrypted with a workspace encryption key (block 2306). In
one embodiment, the encryption key may be a key accessible
to, and shared by, all applications in a workspace when there
is a file exchange between applications. In another embodi-
ment, the encryption key may be an application-specific
encryption key when there is no file exchange. In yet another
embodiment, the encryption key may be a split encryption
key, as discussed in greater detail below. In yet another
embodiment, the encryption key may be maintained on a
per-directory basis for files in memory.

The system call is then processed with the encrypted data
using functions of the policy enforcer (block 2308). The
processing of system calls for both regular and memory
mapped file functions by the policy enforcers is discussed in
greater detail below. However, as an example of processing a
regular file access system call, when a system call is issued by
awrapped application to read a file from storage, and ifthe file
is to be encrypted, a policy enforcer system call creates an
instance of a data structure that is maintained for the file, and
encrypts the file with a workspace key. The data structure may
then store the encrypted file, and in one embodiment, the
encryption key and context data. The encrypted file may then
be accessed and decrypted with a corresponding workspace
decryption key (block 2310).

For information stored locally on a device, such as wireless
device 100, by workspace or wrapped applications, a policy
enforcer may take one or more steps to secure the files with
regular (i.e., non-memory mapped) operation system calls.
As discussed above in FIG. 23, system calls by a workspace
or wrapped application, such as open, read, write, and close
are intercepted by a policy enforcer. Similarly, streaming file
input/output functions, such as fopen, fscanf, fprintf, fgets,
etc. may also be intercepted. A non-exclusive list of file access
operations secured by the policy enforcer includes:

10

20

25

30

35

40

45

50

55

60

65

30

a) open—intercept open system call. Create instance of
data structure per file handle, store file, encryption key,
and context in the data structure. However, if it is
detected that the context is still active for the file handle
that is the subject of the open system call, it is freed
before allocating a new one;

b) write—intercept write system call, encrypt data, and
then write file to memory;

¢) close—intercept close system call, free encryption con-
text and other data structures associated with the closed
file; and

d) read—the data is read from memory, decrypted, and then
provided to the requesting workspace or wrapped appli-
cation.

Additional file access operations may be intercepted, and
handled, in accordance with the discussion herein. For
example, when files are to be exchanged between a work-
space and/or wrapped applications, the call to pass a file
between the applications is intercepted. The file name is then
passed to a directory where the file can be stored and
encrypted by a common encryption key available to work-
space and/or wrapped applications. The call may then be
processed with the new filename where the file is encrypted
with the common key. In one embodiment, the new filename
includes a prefix added to the filename to indicate that the file
is encrypted. Then for the receiving workspace or wrapped
application in the file exchange, the function call to access the
file is also intercepted, decrypted using the common key and
copied to the memory for the receiving application with the
original filename (i.e., without the prefix), and the receiving
application can then access the file with the original access
function.

Although similar to the discussion above, the securing and
handling of memory mapped files by policy enforcers is dis-
cussed below. That is, in memory mapped file access opera-
tions, the operations are performed with respect to a pointer to
the file. To complicate this further, for the same file descriptor,
it is possible that a workspace or wrapped application can use
regular system file access calls, and memory mapped system
calls, at the same time. For memory mapped system calls by
aworkspace or wrapped application, in one embodiment, the
following calls are intercepted: mmap, munmap, vm_deallo-
cate, msync, fentl, scync, truncate, ftruncate. Then, for
example, when a function such has mmap is intercepted, a
corresponding policy enforcer function processes the call.

Thenin order to process the system call, as describe in FIG.
23, a signal bus call handler is installed for each policy
enforcer, which intercepts the system calls and calls one or
more policy enforcer file access functions to process the
system call. For example, for an intercepted mmap system
call, apolicy_enforcer_mmap call is made on the file descrip-
tor, a specified amount of address space is allocated by poli-
cy_enforcer_mmap, the mapping between the file descriptor
to the address space is maintained, and the address space is
marked as not-accessible. Additionally, if fseek or ftruncate
go beyond a current size allocated for the file, additional bytes
of 0 are written to the file after the encryption

Furthermore, for memory mapped file access via the policy
enforcer system calls, the signal bus handler will check a
current protection setting for the file to be accessed, and upon
detecting that the current state is not accessible for the opera-
tion (e.g., memory is not yet allocated), the signal handler will
allocate the memory space, read the section of the file from
memory, decrypt that section, and write the decrypted con-
tents to memory. In one embodiment, the signal handler allo-
cates 4 k bytes of memory for the file write.

US 9,326,145 B2

31

The workspace or wrapped application may then continue
if the memory mapped access was a read operation. When the
memory mapped system call is attempting to write data, the
signal bus handler will intercept this call, check current pro-
tections, and on detecting the current protection is read-only,
will note that this specific page is dirty and map the page to be
read-write. Then, as part of one or more sync functions, dirty
pages are written to physical memory, after encryption, and
those pages are marked as read-only again. Dirty page checks
will also be done as part of one or more hooks when a
workspace or wrapped application goes to the background.

When closing a memory mapped file by one or more policy
enforcer system calls, if close is called before the unmap
system call, the file descriptor is not actually closed. How-
ever, the file descriptor is marked for closure by the munmap
and vm_deallocate policy enforcer system calls. Then when
munmap and vm_deallocate are called, the file is closed as
well.

In the signal bus handler, for memory mapped file access,
ifitis detected that a system call is raised for a situation other
than file access that is processed by a policy enforcer system
call, the system call is passed to the original (i.e., non-work-
space) call handler. Furthermore, for the file descriptors, dis-
cussed above, that have memory mapped management, via
policy enforcer system calls, all read, write, etc. calls are
directed via memory access assuming a specific area in a file
is memory mapped. If the read-write system call access is
occurring on a section of the file that is not memory mapped,
the system calls can be passed through after file encryption
decryption.

As discussed herein, memory usage with the policy
enforcer memory mapped file access system calls is the same
as that of typical operating system kernel-based memory
mapped calls. However, using the policy enforcer memory
mapped file access system calls, page and file based manage-
ment may, in one embodiment discussed above, be limited to
4 k worth of memory. This is beneficial for the limited
resources associated with wireless device 100. Furthermore,
dirty page may be efficiently detected in accordance with the
discussion above. Additionally, data that is written to persis-
tent memory is encrypted to further secure the data.

Q. Cloud-Based Storage for Workspace and Wrapped
Applications

As discussed above, binary instrumentation for wrapped
application enables system calls to be intercepted and pro-
cessed by one or more functions of a policy enforcer. For
example, for data input/output calls of a wrapped application,
the data may be encrypted prior to storage to secure the data
in mobile device’s 100 memory, and then decrypted when
read back from the memory. In one embodiment, such input/
output calls may additionally be intercepted to enable cloud-
based backup and cloud-based common storage for work-
space and wrapped applications.

In order to utilize a cloud-based storage to backup or share
data, in one embodiment, an account is created for a work-
space application in FIG. 24 A, and then the workspace appli-
cation utilizes the account for cloud-based storage in FIG.
24B.

With reference to FIG. 24 A, a user account is created for a
workspace application at a cloud-based storage system (block
2402). The cloud-based storage system could be imple-
mented by server 110, as well as other cloud-based storage
systems. Furthermore, the cloud-based user storage account
may be created automatically when provisioning a work-
space, workspace application, or wrapped application. In
another embodiment, the user may be required to access a
registration service via a web page served for the cloud-based

10

15

20

25

30

35

40

45

50

55

60

65

32

storage service. In either case, user credentials, as well as
application identifiers (e.g., unique device, workspace, and
wrapped application identifiers), are provided to the cloud-
based storage system for identifying a particular device, user,
and application to the cloud-based storage system. In embodi-
ments discussed herein, the cloud-based storage may be par-
titioned for a user, for a specific workspace associated with
the user, or for specific workspace or wrapped applications
associated with user. The user is then enrolled for the services
provided by the cloud-based storage system (block 2404).

Now referring to FIG. 24B, a user authenticates herself to
a workspace based on user credentials (block 2452). A
wrapped application is then launched by the users, and one or
more workspace policies are applied by a policy enforcer of
the wrapped application (block 2454). As discussed below,
the policies may include automatically, and transparently,
backing up data for the workspace application at a cloud
storage service provider. The user credentials, as well as
device, workspace, and wrapped application identifiers, may
then be used to authenticate the user to the cloud storage
system (block 2456). Use of the various identifiers enables
the cloud-based storage system to maintain cloud storage for
different levels of granularity (i.e., for a device, for a user, for
a workspace, for a wrapped application). Furthermore, utiliz-
ing the single-sign-on techniques discussed above, a user
could automatically be logged into the cloud-based storage
service without having to explicitly do so. In one embodi-
ment, the user’s username and workspace certificate (which is
common for each device associated with a user) may be used
to automatically authenticate the user to the cloud-based stor-
age system when her username and workspace certificate are
presented during authentication into the workspace.

Similar to the discussion above, data input/output calls for
a wrapped application are intercepted (block 2458), and a
determination is made as to whether the data should be pro-
cessed (e.g., written to, read from, synchronized with, etc.)
cloud-based storage system. When the data input/output call
does not invoke a cloud-based storage operation (block
2460), the system call is merely handled (block 2464) in
accordance with the discussion above. However, when the
data input/output call does invoke a cloud-based storage
operation (block 2460), the data is processes in cooperation
with the cloud-based storage system (block 2462). In one
embodiment, when the calls are processed with respect to the
cloud-based storage service, the location, which is marked as
the user space at the cloud-based storage service, is recorded
in the wrapped application’s local storage. This indicates to
the wrapped application where certain data exists, i.e. in the
cloud.

For example, when a wrapped application at a mobile
device, which is configured for cloud-bases storage, flushes
data (e.g., application data, application configurations, etc.)
so that the data is written to a local memory, the data input/
output calls associated with the data flush are intercepted.
Then the read, write, etc. calls may be sent to the cloud-based
storage system to back up the data at the cloud in addition to
local storage, or instead of local storage. When a wrapped
application launches, the wrapped application’s data read/
write system calls may then access the cloud-based storage
system to obtain the most recent version of cloud-based data.
As aresult, a user with an account at the cloud-based storage
service, could use the service to access the most recent data,
application configuration, running state, etc. for the same
wrapped application on different devices.

In one embodiment, each wrapped application associated
with a user may share a common storage space on the cloud-
based storage system. The shared common storage may then

US 9,326,145 B2

33

be accessible to each enrolled device associated with the user.
The shared common storage thus enables a user to maintain
and backup all wrapped application-specific data at the loca-
tion within the cloud-based storage service.

Furthermore, in accordance with the discussion herein, the
cloud-based storage service could also be used to back up the
running states of an entire workspace. Each wrapped appli-
cation running in a workspace may back up their data, includ-
ing configuration data, running state, etc. Furthermore,
wrapped application may collectively back up their data when
a workspace closes. Then, when the user later logs into the
workspace, or accesses their workspace on a different device,
the cloud storage data may be used to configure the work-
space and wrapped applications to a current state, including
current data.

To improve the efficiency of the cloud backup and storage,
particular files could be indicated as being subject to cloud-
based storage. For example, temporary files created and uti-
lized by a wrapped application for a particular run need not be
backed up. However, user data generated with the application
and application configuration data could be indicated as being
subject to backup at the cloud-based storage. By segregating
files that should be stored and those that should not be stored
at the cloud-based storage service, the download of wrapped
application data when the wrapped application is launched, as
well as the upload of data when the wrapped application is
closed, require less time to complete.

R. Split-Key Encryption for Secure Data Storage

Mobile device 100 provides security for a workspace in the
form of a security stack that originates from mobile device’s
100 hardware, and through a chain of trust, extends to soft-
ware. The chain of trust may be further extended and rein-
forced for workspace and wrapped applications in the form of
policy enforcers, which ensure that only approved and/or
allowed applications are run on the mobile device, based on
one or more policies. However, if such a device is jailbroken,
the chain of trust is circumvented, and previously inacces-
sible, and secret, data may become accessible and insecure.
This raises great concerns for an enterprise

In one embodiment, a split-key based encryption technique
may be employed for workspace and wrapped applications to
secure data, even against device jail braking. Furthermore, the
split-key based encryption technique, discussed below, may
further be used as a mechanism to enforce one or more work-
place policies, such as for example, an online application
policy. In the embodiments discussed below, the technique is
referred to as a “split key” based technique because an
encryption key, utilized by workspace and wrapped applica-
tions, is divided into multiple parts. A first part is encrypted
with a device key, while a second part is encrypted with a
server key. Furthermore, the workspace only stores the server
key in volatile memory 232 long enough to perform an
encryption operation on the second portion of the split key,
but policy enforcers ensure that the server key is not perma-
nently stored or accessible. Then, whenever a workspace or
wrapped application desires to encrypt or decrypt data using
the split key, the requesting wrapped application must both
request the server key to decrypt the splitkey and authenticate
itself to the server.

Referring to FIG. 25A, a process for generating a split key
for use by a workspace or wrapped application to encrypt data
is described. A workspace or wrapped application is
launched, and one or more policies are applied to the appli-
cation by a policy enforcer ofthe application (block 2502). As
discussed above, data input/output system calls may be inter-
cepted (block 2504), so that security policies may be enforced
on the system calls. The data, which is the subject of the

10

15

20

25

30

35

40

45

50

55

60

65

34

system call, may then be encrypted with a data storage
encryption key (block 2506). The data storage encryption key
may be a key that is unique to the workspace, shared among
workspace and wrapped applications, unique to a particular
application, unique to a particular mobile device 100, unique
to a particular user, etc.

A symmetric encryption key is then used to encrypt the
data storage encryption key (block 2508). This symmetric
encryption key is then split (block 2510) into at least two
parts. A first part of the split symmetric encryption key is
encrypted with a key, which is based on user credentials,
workspace credentials, etc. (block 2512). For example, the
first part of the symmetric encryption key may be encrypted
using password based encryption (PBE). The encrypted first
part of the split symmetric encryption key may then be stored
in shared data store 235. A second part of the split symmetric
encryption key is then encrypted with a server encryption key
(block 2514). In one embodiment, the server encryption key
is requested by the wrapped application after successful user
authentication to the server, and stored in volatile memory
232 just long enough for the wrapped application to perform
an encryption operation on the second portion of the split key.
The encrypted first part and the encrypted second part of the
split symmetric encryption key may then be stored in shared
data store 235.

With reference to FIG. 25B, a process for using a split key
by a workspace or wrapped application to decrypt and access
data is described. A workspace or wrapped application is
launched, and one or more policies are applied to the appli-
cation by a policy enforcer of the application (block 2552).
Data input/output system calls may be intercepted with
respect to data stored on wireless device 100 (block 2554). A
user then authenticates herself based on one or more user
credentials (block 2556), such as a username and password,
passcode as specified in a passcode policy, etc. The first part
of the split symmetric encryption key, which is stored in
shared data store 235, is then decrypted with the encryption
key based on user credentials (block 2558). Furthermore, the
server key for decrypting the second part of the split symmet-
ric encryption key may be requested from server 110, using
the user credentials, and used to decrypt the second part of the
split key (block 2560). The two decrypted parts of the split
symmetric encryption key can then be joined (block 2562),
and the encrypted data storage encryption key decrypted with
the joined symmetric encryption key (block 2564). The
decrypted data storage encryption key may then be used to
decrypt the encrypted data, which is the subject of the inter-
cepted system call (block 2566).

The data maintained in storage at wireless device 100, and
secured by the encrypted data storage encryption key, may
therefore only be accessed with both parts of the split sym-
metric encryption key. When a device is jailbroken, the mere
access to the data is not enough to reveal the data, as the
jailbroken device will not have the entire split encryption key
in unencrypted form.

Itis to be understood that the above description is intended
to be illustrative, and not restrictive. Many other embodi-
ments will be apparent to those of skill in the art upon reading
and understanding the above description. The scope of the
invention should, therefore, be determined with reference to
the appended claims, along with the full scope of equivalents
to which such claims are entitled.

What is claimed is:

1. A non-transitory computer readable medium comprising
instructions which, when executed by one or more hardware
processors, causes the one or more hardware processors to:

US 9,326,145 B2

35

identify, by a particular user application, a first set of appli-
cations that a user has permission to access, the first set
of applications being selected from a plurality of appli-
cations, and wherein each application of the first set of
applications comprises a policy enforcer code that auto-
matically applies one or more security policies to control
behavior of the application;

provide, by the particular user application to a user, an

option to select at least one application of the first set of
applications;

receive, by the particular user application from the user, a

request to access a first application in the first set of
applications;

responsive to receipt of the request, cause, by the particular

user application, the policy enforcer code in the first
application to intercept system calls and framework
calls on the first application and replace symbols for the
intercepted system calls in an in-memory symbol table
with predefined symbols and the framework calls with
predefined calls to enable the policy encoder code to
control behavior of the first application; and

cause, by the particular user application, execution of the

first application following interception and modification
of the system calls and framework calls on the first
application.

2. The non-transitory computer readable medium of claim
1, wherein the particular user application does not have kernel
access for an Operating System executing on a same device as
the particular user application.

3. The non-transitory computer readable medium of claim
1, wherein to provide the option to select at least one appli-
cation of the first set of applications, the instructions are to
cause the one or more hardware processors to:

determine a subset of applications from the first set of

applications that the user has permission to access; and
display at least one or more icons representing the subset of
applications that the user has permission to access.

4. The non-transitory computer medium of claim 1,
wherein to identify the first set of applications that the user
has permission to access, the instructions are to cause the one
or more hardware processors to at least one of:

determine, by the particular user application, whether the

user has permission to access the first application based
on a physical location of a device executing the particu-
lar user application as controlled by the policy enforcer
code of the first application; and

determine, by the particular user application, whether the

user has permission to access the first application based
on either (i) a network connection of a device executing
the particular user application or (ii) a configuration of
the device executing the particular user application.

5. The non-transitory computer medium of claim 1,
wherein the instructions are to cause the one or more hard-
ware processors to:

inject the policy enforcer code into a dynamic load library

of'the first application during a binary instrumentation of
the first application, wherein the behavior of the first
application after the binary instrumentation of the first
application is different than a behavior of the first appli-
cation prior to the binary instrumentation of the first
application.

6. The non-transitory computer medium of claim 1,
wherein to provide the option, the instructions areto cause the
one or more hardware processors to:

display an interface comprising:

a first plurality of icons representing the first set of
applications that the user has permission to access;

10

20

30

35

40

45

55

65

36

a second plurality of icons representing a second set of
one or more applications that the user does not have
permission to access;

wherein the interface indicates that (a) the first plurality
of'icons represents applications that the user has per-
mission to access and (b) the second plurality of icons
represents applications that the user does not have
permission to access.

7. The non-transitory computer medium of claim 1,
wherein the instructions are to cause the one or more hard-
ware processors to, responsive to the identification of the first
set of applications that the user has permission to access,
install the first set of applications on a device executing the
particular user application.

8. The non-transitory computer medium of claim 1,
wherein the instructions are to cause the one or more hard-
ware processors to:

subsequent to causing execution of the first application,

determine a change in permissions associated with the

user;

identify, by the particular user application, that the user

does not have permission to access the first application

based on the change in permissions associated with the
user; and

prevent, by the particular user application, the user from

accessing the first application.

9. The non-transitory computer medium of claim 1,
wherein the instructions are to cause the one or more hard-
ware processors to:

identify, by the particular user application, a second set of

applications that a second user has permission to access,

the second set of applications being selected from the
plurality of applications, and the second set of applica-
tions being different than the first set of applications;

provide, by the particular user application to the second
user, an option to select at least one application of the
second set of applications;

receive, by the particular user application from the second

user, a second request to access a second application in

the second set of applications;

responsive to receipt of the second request: cause, by the

particular user application, execution of the second

application.

10. A device comprising:

at least one hardware processor;

amemory on which stored instructions that are to cause the

at least one hardware processor to:

identify, by a particularuser application, a first set of one or

more applications that a user has permission to access,
the first set of one or more applications being selected
from a plurality of applications and wherein each appli-
cation of the first set of one or more applications com-
prises a policy enforcer code that automatically applies
one or more security policies to control behavior of the
application;

provide, by the particular user application to a user, an

option to select at least one application of the first set of

applications;

receive, by the particular user application from the user, a

request to access a first application in the first set of one

or more applications;

responsive at least to receipt of the request cause, by the

particular user application, the policy enforcer code in

the first application to intercept system calls and frame-
work calls on the first application and replace symbols
for the intercepted system calls in an in-memory symbol
table with predefined symbols and the framework calls

US 9,326,145 B2

37

with predefined calls to enable the policy encoder code

to control behavior of the first application; and

cause, by the particular user application, execution of the

first application following interception and modification

of the at least one system calls and the framework calls
on the first application.

11. The device of claim 10, wherein the particular user
application does not have kernel access for an Operating
System executing on a same device as the particular user
application.

12. The device of claim 10, wherein to identify the first set
of applications that the user has permission to access, the
instructions are to cause the at least one hardware processorto
at least one of:

determine, by the particular user application, whether the

user has permission to access the first application based

on a physical location of a device executing the particu-
lar user application as controlled by the policy enforcer
code of the first application;

determine, by the particular user application, whether the

user has permission to access the first application based

on a network connection of a device executing the par-
ticular user application; and

determine, by the particular user application, whether the

user has permission to access the first application based

on a configuration of a device executing the particular
user application.

13. The device of claim 10, wherein to provide the option,
the instructions are to cause the at least one hardware proces-
sor to:

display an interface comprising:

a first plurality of icons representing the first set of
applications that the user has permission to access;

a second plurality of icons representing a second set of
one or more applications that the user does not have
permission to access;

wherein the interface indicates that (a) the first plurality of

icons represents applications that the

user has permission to access and (b) the second plurality

of icons represents applications that the user does not

have permission to access.

14. The device of claim 10, wherein the instructions are to
cause the at least one hardware processor to, responsive to the
identification of the first set of applications that the user has

10

—_
w

20

40

38

permission to access, install the first set of applications on a
device executing the particular user application.
15. The device of claim 10, wherein the instructions are to
cause the at least one hardware processor to:
subsequent to causing execution of the first application,
determine a change in permissions associated with the
user;
identify, by the particular user application, that the user
does not have permission to access the first application
based on the change in permissions associated with the
user; and
prevent, by the particular user application, the user from
accessing the first application.
16. The device of claim 10, wherein the instructions are to
cause the at least one hardware processor to:
inject the policy enforcer code into a dynamic load library
of'the first application during a binary instrumentation of
the first application.
17. A method comprising:
identifying, by a particular user application, a first set of
applications that a user has permission to access, the first
set of applications being selected from a plurality of
applications, and wherein each application of the first set
of applications comprises a policy enforcer code that
automatically applies one or more security policies to
control behavior of the application;
providing, by the particular user application to a user, an
option to select at least one application of the first set of
applications;
receiving, by the particular user application from the user,
a request to access a first application in the first set of
applications;
causing, by the particular user application, the policy
enforcer code in a first application in the first set of
applications to intercept system calls and framework
calls on the first application and replace symbols for the
intercepted system calls in an in-memory symbol table
with predefined symbols and the framework calls with
predefined calls to enable the policy encoder code to
control behavior of the first application; and
causing, by the particular user application, execution of the
first application following interception and modification
of the system calls and framework calls on the first
application.

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 9,326,145 B2 Page 1 of 1
APPLICATION NO. :13/971759

DATED : April 26, 2016

INVENTOR(S) : Asif Awan et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In the Claims
In column 37, line 5, in Claim 10, delete “the at least one™ and insert -- the --, therefor.

Signed and Sealed this
Eighteenth Day of October, 2016

Dhecbatle K Zea

Michelle K. Lee
Director of the United States Patent and Trademark Office

